Ancient Solutions to Geometric Flows

Mat Langford

Geometric pde Zoom Seminar

October 6, 2020.

Liouville's Theorem

Theorem (Liouville): Bounded entire harmonic functions are constant.

Liouville's Theorem

Theorem (Liouville): Bounded entire harmonic functions are constant. Proof [following Nelson]: Given two points, consider two balls of equal radius with the given points as centers. If the radius is large enough, the two balls will coincide except for an arbitrarily small proportion of their volume. Since the harmonic function is bounded, the averages of it over the two balls are arbitrarily close; so, by the mean value property, it must assume the same value at both points.

Liouville's Theorem

Theorem (Liouville): Bounded entire harmonic functions are constant. Proof [following Nelson]: Given two points, consider two balls of equal radius with the given points as centers. If the radius is large enough, the two balls will coincide except for an arbitrarily small proportion of their volume. Since the harmonic function is bounded, the averages of it over the two balls are arbitrarily close; so, by the mean value property, it must assume the same value at both points.

Moral: Diffusion smooths-out, absolute diffusion smooths-out absolutely...

Liouville's Theorem

Theorem (Liouville): Bounded entire harmonic functions are constant. Proof [following Nelson]: Given two points, consider two balls of equal radius with the given points as centers. If the radius is large enough, the two balls will coincide except for an arbitrarily small proportion of their volume. Since the harmonic function is bounded, the averages of it over the two balls are arbitrarily close; so, by the mean value property, it must assume the same value at both points.

Moral: Diffusion smooths-out, absolute diffusion smooths-out absolutely...
... but this, like all morals, is of limited use: There exist nontrivial (unbounded) entire harmonic functions, such as $(x, y) \mapsto x^{2}-y^{2}$.

Liouville's Theorem

Theorem (Liouville): Bounded entire harmonic functions are constant.
Proof [following Nelson]: Given two points, consider two balls of equal radius with the given points as centers. If the radius is large enough, the two balls will coincide except for an arbitrarily small proportion of their volume. Since the harmonic function is bounded, the averages of it over the two balls are arbitrarily close; so, by the mean value property, it must assume the same value at both points.

Moral: Diffusion smooths-out, absolute diffusion smooths-out absolutely...
... but this, like all morals, is of limited use: There exist nontrivial (unbounded) entire harmonic functions, such as $(x, y) \mapsto x^{2}-y^{2}$. *Liouville's theorem actually holds assuming only a one-sided bound (which can be replaced by a sublinear growth rate).

Liouville's Theorem

Liouville's theorem also holds in manifolds of non-negative Ricci curvature.

Liouville's Theorem

Liouville's theorem also holds in manifolds of non-negative Ricci curvature.

The result follows from the Cheng-Yau gradient estimate: If (M, g) satisfies $\mathrm{Rc} \geq-K g, K>0$, and $u \in C^{\infty}\left(B_{r}(x)\right)$ is a positive harmonic function, then

$$
\max _{B_{r / 2}(x)} \frac{|\nabla u|}{u} \leq c_{n}\left(r^{-1}+\sqrt{K}\right) .
$$

Liouville's Theorem

Liouville's theorem also holds in manifolds of non-negative Ricci curvature.

The result follows from the Cheng-Yau gradient estimate: If (M, g) satisfies $\mathrm{Rc} \geq-K g, K>0$, and $u \in C^{\infty}\left(B_{r}(x)\right)$ is a positive harmonic function, then

$$
\max _{B_{r / 2}(x)} \frac{|\nabla u|}{u} \leq c_{n}\left(r^{-1}+\sqrt{K}\right) .
$$

This is obtained using cut-off functions and the maximum principle.

Liouville's Theorem

Liouville's theorem also holds in manifolds of non-negative Ricci curvature.

The result follows from the Cheng-Yau gradient estimate: If (M, g) satisfies $\mathrm{Rc} \geq-K g, K>0$, and $u \in C^{\infty}\left(B_{r}(x)\right)$ is a positive harmonic function, then

$$
\max _{B_{r / 2}(x)} \frac{|\nabla u|}{u} \leq c_{n}\left(r^{-1}+\sqrt{K}\right) .
$$

This is obtained using cut-off functions and the maximum principle.
Similar methods were later used by Li-Yau and Hamilton to obtain differential Harnack inequalities for parabolic equations.

Bernstein's Theorem

Theorem (Bernstein): Entire minimal graphs are flat.

Bernstein's Theorem

Theorem (Bernstein): Entire minimal graphs are flat.
Proof: The idea is to show that

$$
\lim _{r \rightarrow \infty} \int_{B_{r}}|A|^{2}=0
$$

Bernstein's Theorem

Theorem (Bernstein): Entire minimal graphs are flat.
Proof: The idea is to show that

$$
\lim _{r \rightarrow \infty} \int_{B_{r}}|A|^{2}=0
$$

This uses the minimizing property of minimal graphs over convex domains, the stability inequality, and the "logarithmic cut-off trick".

Bernstein's Theorem

Theorem (Bernstein): Entire minimal graphs are flat.
Proof: The idea is to show that

$$
\lim _{r \rightarrow \infty} \int_{B_{r}}|A|^{2}=0
$$

This uses the minimizing property of minimal graphs over convex domains, the stability inequality, and the "logarithmic cut-off trick".
By ruling out the existence of stable minimal cones in low dimensions, Bernstein's Theorem holds up to (ambient) dimension 7 [Fleming, DE Giorgi, Almgren, Simons].

Bernstein's Theorem

Theorem (Bernstein): Entire minimal graphs are flat.
Proof: The idea is to show that

$$
\lim _{r \rightarrow \infty} \int_{B_{r}}|A|^{2}=0
$$

This uses the minimizing property of minimal graphs over convex domains, the stability inequality, and the "logarithmic cut-off trick".

By ruling out the existence of stable minimal cones in low dimensions, Bernstein's Theorem holds up to (ambient) dimension 7 [Fleming, de Giorgi, Almgren, Simons].

There are counterexamples in dimensions 8 and higher [Simons, Bonbieri-De Giorgi-Giusti].

The heat equation

Consider now a solution $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the heat equation

$$
\partial_{t} u=\Delta u
$$

The heat equation

Consider now a solution $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the heat equation

$$
\partial_{t} u=\Delta u .
$$

Here, diffusion acts "forwards in time", so there should exist few solutions defined for $t \in(-\infty, T)$. I.e. ancient solutions.

The heat equation

Consider now a solution $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the heat equation

$$
\partial_{t} u=\Delta u .
$$

Here, diffusion acts "forwards in time", so there should exist few solutions defined for $t \in(-\infty, T)$. I.e. ancient solutions.
Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

The heat equation

Consider now a solution $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the heat equation

$$
\partial_{t} u=\Delta u .
$$

Here, diffusion acts "forwards in time", so there should exist few solutions defined for $t \in(-\infty, T)$. I.e. ancient solutions.
Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

- If $0 \leq u(x, t) \leq \mathrm{e}^{o(|x|+\sqrt{-t})}$, then u is constant.

The heat equation

Consider now a solution $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the heat equation

$$
\partial_{t} u=\Delta u .
$$

Here, diffusion acts "forwards in time", so there should exist few solutions defined for $t \in(-\infty, T)$. I.e. ancient solutions.
Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

- If $0 \leq u(x, t) \leq \mathrm{e}^{o(|x|+\sqrt{-t})}$, then u is constant.
- If $u(x, t) \leq o(|x|+\sqrt{-t})$, then u is constant.

The heat equation

Consider now a solution $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the heat equation

$$
\partial_{t} u=\Delta u .
$$

Here, diffusion acts "forwards in time", so there should exist few solutions defined for $t \in(-\infty, T)$. I.e. ancient solutions.
Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

- If $0 \leq u(x, t) \leq \mathrm{e}^{o(|x|+\sqrt{-t})}$, then u is constant.
- If $u(x, t) \leq o(|x|+\sqrt{-t})$, then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville's theorem):

The heat equation

Consider now a solution $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the heat equation

$$
\partial_{t} u=\Delta u .
$$

Here, diffusion acts "forwards in time", so there should exist few solutions defined for $t \in(-\infty, T)$. I.e. ancient solutions.
Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

- If $0 \leq u(x, t) \leq \mathrm{e}^{o(|x|+\sqrt{-t})}$, then u is constant.
- If $u(x, t) \leq o(|x|+\sqrt{-t})$, then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville's theorem): If $u \in C^{\infty}\left(P_{r}(x, t)\right)$ is a non-negative solution to the heat equation, then

$$
\frac{|\nabla u(x, t)|}{u(x, t)} \leq c_{n}\left(r^{-1}+\sqrt{K}\right)\left(1+\log \left(\frac{\sup _{P_{r}(x, t)} u}{u(x, t)}\right)\right) \text { in } P_{r / 2}(x, t)
$$

The heat equation

Consider now a solution $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the heat equation

$$
\partial_{t} u=\Delta u .
$$

Here, diffusion acts "forwards in time", so there should exist few solutions defined for $t \in(-\infty, T)$. I.e. ancient solutions.
Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

- If $0 \leq u(x, t) \leq \mathrm{e}^{o(|x|+\sqrt{-t})}$, then u is constant.
- If $u(x, t) \leq o(|x|+\sqrt{-t})$, then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville's theorem): If $u \in C^{\infty}\left(P_{r}(x, t)\right)$ is a non-negative solution to the heat equation, then

$$
\frac{|\nabla u(x, t)|}{u(x, t)} \leq c_{n}\left(r^{-1}+\sqrt{K}\right)\left(1+\log \left(\frac{\sup _{P_{r}(x, t)} u}{u(x, t)}\right)\right) \text { in } P_{r / 2}(x, t)
$$

These are again obtained using cut-off functions and the maximum principle.

The heat equation

Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

- If $0 \leq u(x, t) \leq \mathrm{e}^{o(|x|+\sqrt{-t})}$, then u is constant.
- If $u(x, t) \leq o(|x|+\sqrt{-t})$, then u is constant.

The heat equation

Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

- If $0 \leq u(x, t) \leq \mathrm{e}^{o(|x|+\sqrt{-t})}$, then u is constant.
- If $u(x, t) \leq o(|x|+\sqrt{-t})$, then u is constant.

Hypotheses are necessary: Consider the traveling wave solutions $(x, t) \mapsto \mathrm{e}^{\lambda x_{1}+\lambda^{2} t}$ and the affine solutions $(x, t) \mapsto a x+b$.

The heat equation

Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

- If $0 \leq u(x, t) \leq \mathrm{e}^{o(|x|+\sqrt{-t})}$, then u is constant.
- If $u(x, t) \leq o(|x|+\sqrt{-t})$, then u is constant.

Hypotheses are necessary: Consider the traveling wave solutions $(x, t) \mapsto \mathrm{e}^{\lambda x_{1}+\lambda^{2} t}$ and the affine solutions $(x, t) \mapsto a x+b$.
The theorem also applies to ancient solutions to the heat equation on Riemannian manifolds of non-negative Ricci curvature.

The heat equation

Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

- If $0 \leq u(x, t) \leq \mathrm{e}^{o(|x|+\sqrt{-t})}$, then u is constant.
- If $u(x, t) \leq o(|x|+\sqrt{-t})$, then u is constant.

Hypotheses are necessary: Consider the traveling wave solutions $(x, t) \mapsto \mathrm{e}^{\lambda x_{1}+\lambda^{2} t}$ and the affine solutions $(x, t) \mapsto a x+b$.
The theorem also applies to ancient solutions to the heat equation on Riemannian manifolds of non-negative Ricci curvature.

Similar results can be obtained in the presence of appropriate boundary conditions via the modulus of continuity estimates of Clutterbuck.

The heat equation

Theorem (Souplet-Zhang) Let u be an ancient solution to the heat equation on \mathbb{R}^{n}.

- If $0 \leq u(x, t) \leq \mathrm{e}^{o(|x|+\sqrt{-t})}$, then u is constant.
- If $u(x, t) \leq o(|x|+\sqrt{-t})$, then u is constant.

Hypotheses are necessary: Consider the traveling wave solutions $(x, t) \mapsto \mathrm{e}^{\lambda x_{1}+\lambda^{2} t}$ and the affine solutions $(x, t) \mapsto a x+b$.
The theorem also applies to ancient solutions to the heat equation on Riemannian manifolds of non-negative Ricci curvature.
Similar results can be obtained in the presence of appropriate boundary conditions via the modulus of continuity estimates of Clutterbuck.
The point here is that the modulus of continuity

$$
\omega(s, t):=\sup \left\{\frac{u(x, t)-u(y, t)}{2}: \frac{d(x, y)}{2}=s\right\}
$$

of a solution to the heat equation is a subsolution to the one-dimensional heat equation (with induced boundary conditions).

Semilinear heat equations

Consider now solutions $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the semi-linear heat equation

$$
\partial_{t} u=\Delta u+|u|^{p-1} u
$$

for subcritical exponents $1<p<\frac{n+2}{n-2}$.

Semilinear heat equations

Consider now solutions $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the semi-linear heat equation

$$
\partial_{t} u=\Delta u+|u|^{p-1} u
$$

for subcritical exponents $1<p<\frac{n+2}{n-2}$.
Solutions blow-up in finite time and are modeled by ancient solutions.

Semilinear heat equations

Consider now solutions $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the semi-linear heat equation

$$
\partial_{t} u=\Delta u+|u|^{p-1} u
$$

for subcritical exponents $1<p<\frac{n+2}{n-2}$.
Solutions blow-up in finite time and are modeled by ancient solutions.
Theorem (Merle-ZaAG) Let $u: \mathbb{R}^{n} \times(-\infty, \omega) \rightarrow \mathbb{R}$ be a positive ancient solution to the semi-linear heat equation. If

$$
u(x, t) \leq O\left((\omega-t)^{-\frac{1}{\rho-1}}\right)
$$

then

$$
u(x, t)=0, \text { or } u(x, t)=(C+(p-1)(\omega-t))^{-\frac{1}{\rho-1}} .
$$

Semilinear heat equations

Consider now solutions $u: \mathbb{R}^{n} \times(\alpha, \omega) \rightarrow \mathbb{R}$ to the semi-linear heat equation

$$
\partial_{t} u=\Delta u+|u|^{p-1} u
$$

for subcritical exponents $1<p<\frac{n+2}{n-2}$.
Solutions blow-up in finite time and are modeled by ancient solutions.
Theorem (Merle-ZaAG) Let $u: \mathbb{R}^{n} \times(-\infty, \omega) \rightarrow \mathbb{R}$ be a positive ancient solution to the semi-linear heat equation. If

$$
u(x, t) \leq O\left((\omega-t)^{-\frac{1}{\rho-1}}\right)
$$

then

$$
u(x, t)=0, \text { or } u(x, t)=(C+(p-1)(\omega-t))^{-\frac{1}{p-1}} .
$$

Proof is based on the analysis of a Lyapunov functional.

Mean curvature flow

A family $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in I}$ of hypersurfaces $\mathcal{M}_{t}^{n} \subset \mathbb{R}^{n+1}$ satisfies mean curvature flow if

$$
\partial_{t} X(x, t)=\vec{H}(x, t)
$$

for some parametrization $X: M^{n} \times I \rightarrow \mathbb{R}^{n+1}$, where $\vec{H}(\cdot, t)=\operatorname{div}(D X(\cdot, t))$ is the mean curvature vector of \mathcal{M}_{t}^{n}.

Mean curvature flow

A family $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in I}$ of hypersurfaces $\mathcal{M}_{t}^{n} \subset \mathbb{R}^{n+1}$ satisfies mean curvature flow if

$$
\partial_{t} X(x, t)=\vec{H}(x, t)
$$

for some parametrization $X: M^{n} \times I \rightarrow \mathbb{R}^{n+1}$, where $\vec{H}(\cdot, t)=\operatorname{div}(D X(\cdot, t))$ is the mean curvature vector of \mathcal{M}_{t}^{n}.

If the time-slices \mathcal{M}_{t}^{n} are mean convex boundaries, $\mathcal{M}_{t}^{n}=\partial \Omega_{t}$, then, equivalently, the arrival time $u: \cup_{t \in I} \mathcal{M}_{t} \rightarrow \mathbb{R}$ defined by

$$
u(X)=t \quad \Longleftrightarrow \quad X \in \mathcal{M}_{t}^{n}
$$

satisfies the level set flow:

$$
-|D u| \operatorname{div}\left(\frac{D u}{|D u|}\right)=1
$$

Mean curvature flow

A solution $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in I}$ is referred to as ancient if $\left(-\infty, t_{0}\right) \subset I$ for some $t_{0} \in \mathbb{R}$ (w.l.o.g. $\left.t_{0}=0\right)$. Equivalently for mean convex solutions, the arrival time u is a complete function.

Mean curvature flow

A solution $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in I}$ is referred to as ancient if $\left(-\infty, t_{0}\right) \subset I$ for some $t_{0} \in \mathbb{R}$ (w.l.o.g. $\left.t_{0}=0\right)$. Equivalently for mean convex solutions, the arrival time u is a complete function.
(Convex) ancient solutions arise as singularity models for (mean convex) mean curvature flow.

Mean curvature flow

A solution $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in I}$ is referred to as ancient if $\left(-\infty, t_{0}\right) \subset I$ for some $t_{0} \in \mathbb{R}$ (w.l.o.g. $\left.t_{0}=0\right)$. Equivalently for mean convex solutions, the arrival time u is a complete function.
(Convex) ancient solutions arise as singularity models for (mean convex) mean curvature flow.
Indeed, suppose that $\lambda_{j}:=\left|A_{\left(p_{j}, t_{j}\right)}\right| \rightarrow \infty$ as $j \rightarrow \infty$ for $p_{j} \in \mathcal{M}_{t_{j}}, t_{j} \in I$, and consider the rescaled flows

$$
\mathcal{M}_{t}^{j}:=\lambda_{j}\left(\mathcal{M}_{\lambda^{-2} t+t_{j}}-p_{j}\right), \text { for } t \in \lambda_{j}^{2} I-t_{j}
$$

If the sequence converges, then it will converge to an ancient solution since $\lambda_{j}^{2} I-t_{j} \rightarrow(-\infty, \infty)$.

Mean curvature flow

A solution $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in I}$ is referred to as ancient if $\left(-\infty, t_{0}\right) \subset I$ for some $t_{0} \in \mathbb{R}$ (w.l.o.g. $\left.t_{0}=0\right)$. Equivalently for mean convex solutions, the arrival time u is a complete function.
(Convex) ancient solutions arise as singularity models for (mean convex) mean curvature flow.
Indeed, suppose that $\lambda_{j}:=\left|A_{\left(p_{j}, t_{j}\right)}\right| \rightarrow \infty$ as $j \rightarrow \infty$ for $p_{j} \in \mathcal{M}_{t_{j}}, t_{j} \in I$, and consider the rescaled flows

$$
\mathcal{M}_{t}^{j}:=\lambda_{j}\left(\mathcal{M}_{\lambda^{-2} t+t_{j}}-p_{j}\right), \text { for } t \in \lambda_{j}^{2} I-t_{j} .
$$

If the sequence converges, then it will converge to an ancient solution since $\lambda_{j}^{2} I-t_{j} \rightarrow(-\infty, \infty)$.
Moreover, if the \mathcal{M}_{t} are mean convex, then the blow-up is convex Huisken-Sinestrari.

Mean curvature flow

A solution $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in I}$ is referred to as ancient if $\left(-\infty, t_{0}\right) \subset I$ for some $t_{0} \in \mathbb{R}$ (w.l.o.g. $\left.t_{0}=0\right)$. Equivalently for mean convex solutions, the arrival time u is a complete function.
(Convex) ancient solutions arise as singularity models for (mean convex) mean curvature flow.
Indeed, suppose that $\lambda_{j}:=\left|A_{\left(p_{j}, t_{j}\right)}\right| \rightarrow \infty$ as $j \rightarrow \infty$ for $p_{j} \in \mathcal{M}_{t_{j}}, t_{j} \in I$, and consider the rescaled flows

$$
\mathcal{M}_{t}^{j}:=\lambda_{j}\left(\mathcal{M}_{\lambda^{-2} t+t_{j}}-p_{j}\right), \text { for } t \in \lambda_{j}^{2} I-t_{j} .
$$

If the sequence converges, then it will converge to an ancient solution since $\lambda_{j}^{2} I-t_{j} \rightarrow(-\infty, \infty)$.
Moreover, if the \mathcal{M}_{t} are mean convex, then the blow-up is convex Huisken-Sinestrari.

Thus, if we can understand (convex) ancient solutions, we can understand the local geometry of (mean convex) solutions about their singularities.

Mean curvature flow

A solution $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in I}$ is referred to as ancient if $\left(-\infty, t_{0}\right) \subset I$ for some $t_{0} \in \mathbb{R}$ (w.l.o.g. $\left.t_{0}=0\right)$. Equivalently for mean convex solutions, the arrival time u is a complete function.
(Convex) ancient solutions arise as singularity models for (mean convex) mean curvature flow.
Indeed, suppose that $\lambda_{j}:=\left|A_{\left(p_{j}, t_{j}\right)}\right| \rightarrow \infty$ as $j \rightarrow \infty$ for $p_{j} \in \mathcal{M}_{t_{j}}, t_{j} \in I$, and consider the rescaled flows

$$
\mathcal{M}_{t}^{j}:=\lambda_{j}\left(\mathcal{M}_{\lambda^{-2} t+t_{j}}-p_{j}\right), \text { for } t \in \lambda_{j}^{2} I-t_{j} .
$$

If the sequence converges, then it will converge to an ancient solution since $\lambda_{j}^{2} I-t_{j} \rightarrow(-\infty, \infty)$.
Moreover, if the \mathcal{M}_{t} are mean convex, then the blow-up is convex Huisken-Sinestrari.

Thus, if we can understand (convex) ancient solutions, we can understand the local geometry of (mean convex) solutions about their singularities.

Mean curvature flow

Prototypical examples are the shrinking sphere, $\left\{S_{\sqrt{-2 n t}}^{n}\right\}_{t<0}$, and the shrinking cylinders $\left\{\mathbb{R}^{k} \times S_{\sqrt{-2(n-k) t}}^{n-k}\right\}_{t<0}, k \in\{0, \ldots, n\}$.

Mean curvature flow

Prototypical examples are the shrinking sphere, $\left\{S_{\sqrt{-2 n t}}^{n}\right\}_{t<0}$, and the shrinking cylinders $\left\{\mathbb{R}^{k} \times S_{\sqrt{-2(n-k) t}}^{n-k}\right\}_{t<0}, k \in\{0, \ldots, n\}$.
Theorem [Haslhofer-Hershkovits, Huisken-Sinestrari, X.-J. WAng] The shrinking sphere is unique amongst ancient solutions satisfying mild geometric hypotheses (such as uniform pinching).

Mean curvature flow

Prototypical examples are the shrinking sphere, $\left\{S_{\sqrt{-2 n t}}^{n}\right\}_{t<0}$, and the shrinking cylinders $\left\{\mathbb{R}^{k} \times S_{\sqrt{-2(n-k) t}}^{n-k}\right\}_{t<0}, k \in\{0, \ldots, n\}$.
Theorem [Haslhofer-Hershkovits, Huisken-Sinestrari, X.-J. WANG] The shrinking sphere is unique amongst ancient solutions satisfying mild geometric hypotheses (such as uniform pinching).
See also [Bryan-Louie, Bryan-Ivaki-Scheuer, K. Choi-Mantoulidis, Huisken-Sinestrari, Lambert-Lotay-Schulze, L., L.-Lynch, Lynch-Nguyen, Risa-Sinestrari, Sonnanburg]

Monotonicity formulae and self-similar solutions

Monotonicity of Gaussian area [Huisken]:

Monotonicity formulae and self-similar solutions

Monotonicity of Gaussian area [Huisken]:

$$
\frac{d}{d t} \int_{\mathcal{M}_{t}^{n}}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X \leq-\int_{\mathcal{M}_{t}^{n}}\left|\vec{H}+\frac{X^{\perp}}{-2 t}\right|^{2}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X .
$$

Monotonicity formulae and self-similar solutions

Monotonicity of Gaussian area [Huisken]:

$$
\frac{d}{d t} \int_{\mathcal{M}_{t}^{n}}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X \leq-\int_{\mathcal{M}_{t}^{n}}\left|\vec{H}+\frac{X^{\perp}}{-2 t}\right|^{2}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X .
$$

The inequality is strict unless $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(\alpha, 0)}$ is a shrinking solution:

$$
\mathcal{M}_{t}=\sqrt{-t} \mathcal{M}_{-1}, \quad t<0
$$

Monotonicity formulae and self-similar solutions

Monotonicity of Gaussian area [Huisken]:

$$
\frac{d}{d t} \int_{\mathcal{M}_{t}^{n}}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X \leq-\int_{\mathcal{M}_{t}^{n}}\left|\vec{H}+\frac{X^{\perp}}{-2 t}\right|^{2}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X .
$$

The inequality is strict unless $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(\alpha, 0)}$ is a shrinking solution:

$$
\mathcal{M}_{t}=\sqrt{-t} \mathcal{M}_{-1}, \quad t<0
$$

Differential Harnack inequality [HAMILTON]:

Monotonicity formulae and self-similar solutions

Monotonicity of Gaussian area [Huisken]:
$\frac{d}{d t} \int_{\mathcal{M}_{t}^{n}}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X \leq-\int_{\mathcal{M}_{t}^{n}}\left|\vec{H}+\frac{X^{\perp}}{-2 t}\right|^{2}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X$.
The inequality is strict unless $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(\alpha, 0)}$ is a shrinking solution:

$$
\mathcal{M}_{t}=\sqrt{-t} \mathcal{M}_{-1}, \quad t<0
$$

Differential Harnack inequality [Hamilton]:If $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(0, \omega)}$ is strictly convex, then (with respect to the Gauss map parametrization)

$$
\partial_{t}(\sqrt{t} H) \geq 0 .
$$

Monotonicity formulae and self-similar solutions

Monotonicity of Gaussian area [Huisken]:
$\frac{d}{d t} \int_{\mathcal{M}_{t}^{n}}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X \leq-\int_{\mathcal{M}_{t}^{n}}\left|\vec{H}+\frac{X^{\perp}}{-2 t}\right|^{2}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X$.
The inequality is strict unless $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(\alpha, 0)}$ is a shrinking solution:

$$
\mathcal{M}_{t}=\sqrt{-t} \mathcal{M}_{-1}, \quad t<0
$$

Differential Harnack inequality [Hamilton]:If $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(0, \omega)}$ is strictly convex, then (with respect to the Gauss map parametrization)

$$
\partial_{t}(\sqrt{t} H) \geq 0
$$

The inequality is strict unless $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(0, \omega)}$ is an expanding solution:

$$
\mathcal{M}_{t}=\sqrt{t} \mathcal{M}_{1}, \quad t>0
$$

Monotonicity formulae and self-similar solutions

Monotonicity of Gaussian area [Huisken]:
$\frac{d}{d t} \int_{\mathcal{M}_{t}^{n}}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X \leq-\int_{\mathcal{M}_{t}^{n}}\left|\vec{H}+\frac{X^{\perp}}{-2 t}\right|^{2}(-4 \pi t)^{-\frac{n}{2}} \mathrm{e}^{-\frac{|X|^{2}}{-4 t}} d X$.
The inequality is strict unless $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(\alpha, 0)}$ is a shrinking solution:

$$
\mathcal{M}_{t}=\sqrt{-t} \mathcal{M}_{-1}, \quad t<0
$$

Differential Harnack inequality [Hamilton]:If $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(0, \omega)}$ is strictly convex, then (with respect to the Gauss map parametrization)

$$
\partial_{t}(\sqrt{t} H) \geq 0
$$

The inequality is strict unless $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(0, \omega)}$ is an expanding solution:

$$
\mathcal{M}_{t}=\sqrt{t} \mathcal{M}_{1}, \quad t>0
$$

For ancient solutions,

$$
\partial_{t} H \geq 0
$$

with strict inequality unless $\left\{\mathcal{M}_{t}^{n}\right\}_{t \in(-\infty, \omega)}$ is a translating solution:

$$
\mathcal{M}_{t}=\mathcal{M}_{0}+t e, \quad t \in \mathbb{R} \text { for some } e \in \mathbb{R}^{n+1}
$$

Shrinking solutions

For each pair of relatively prime (p, q) satisfying $\frac{1}{2}<\frac{p}{q}<\frac{\sqrt{2}}{2}$, there is a closed self-shrinking solution to curve shortening flow $\left\{\Gamma_{t}^{p, q}\right\}_{t \in(-\infty, 0))}$ such that $\Gamma_{-1}^{p, q}$ has rotation index p, lies in an annulus about the origin, and touches each boundary of the annulus q times.

Shrinking solutions

For each pair of relatively prime (p, q) satisfying $\frac{1}{2}<\frac{p}{q}<\frac{\sqrt{2}}{2}$, there is a closed self-shrinking solution to curve shortening flow $\left\{\Gamma_{t}^{p, q}\right\}_{t \in(-\infty, 0))}$ such that $\Gamma_{-1}^{p, q}$ has rotation index p, lies in an annulus about the origin, and touches each boundary of the annulus q times.
Shrinking solutions are critical points of the Gaussian area

$$
F\left(M_{-1}\right):=\int_{M_{-1}} \mathrm{e}^{-\frac{|X|^{2}}{4}} d \mathcal{H}^{n}(X)
$$

Shrinking solutions

For each pair of relatively prime (p, q) satisfying $\frac{1}{2}<\frac{p}{q}<\frac{\sqrt{2}}{2}$, there is a closed self-shrinking solution to curve shortening flow $\left\{\Gamma_{t}^{p, q}\right\}_{t \in(-\infty, 0))}$. such that $\Gamma_{-1}^{p, q}$ has rotation index p, lies in an annulus about the origin, and touches each boundary of the annulus q times.
Shrinking solutions are critical points of the Gaussian area

$$
F\left(M_{-1}\right):=\int_{M_{-1}} \mathrm{e}^{-\frac{|X|^{2}}{4}} d \mathcal{H}^{n}(X) .
$$

Theorem [Colding-Minicozzi, Huisken] The shrinking cylinders $\mathbb{R}^{m} \times S_{\sqrt{-2(n-m) t}}^{n-m}$ and the Abresch-Langer cylinders $\mathbb{R}^{n-1} \times \Gamma_{t}^{p, q}$ are the only properly immersed, mean convex shrinkers with finite Gaussian area.

Shrinking solutions

Many further examples which are not mean convex are known via a variety of methods [Angenent, Drugan, Kapouleas, Ketover, Kleene, McGrath, Moller, Nguyen]

Shrinking solutions

Many further examples which are not mean convex are known via a variety of methods [Angenent, Drugan, Kapouleas, Ketover, Kleene, McGrath, Moller, Nguyen]

Brendle: the shrinking sphere is the only compact, embedded example of genus zero in \mathbb{R}^{3}.

Shrinking solutions

Many further examples which are not mean convex are known via a variety of methods [Angenent, Drugan, Kapouleas, Ketover, Kleene, McGrath, Moller, Nguyen]

Brendle: the shrinking sphere is the only compact, embedded example of genus zero in \mathbb{R}^{3}.

Mramor-S. Wang: embedded genus one shrinkers in \mathbb{R}^{3} are unknotted.

Shrinking solutions

Many further examples which are not mean convex are known via a variety of methods [Angenent, Drugan, Kapouleas, Ketover, Kleene, McGrath, Moller, Nguyen]

Brendle: the shrinking sphere is the only compact, embedded example of genus zero in \mathbb{R}^{3}.

Mramor-S. Wang: embedded genus one shrinkers in \mathbb{R}^{3} are unknotted.

Open question: Is Angenent's torus the only compact, embedded, genus 1 shrinker in \mathbb{R}^{3} ?

Translating solutions

Translating solutions are an important special class of ancient solutions.

Translating solutions

Translating solutions are an important special class of ancient solutions.
(Easy) Theorem Modulo spacetime translations, the only translating solutions to curve shortening flow with bulk velocity $v=e_{2}$ are

Translating solutions

Translating solutions are an important special class of ancient solutions.
(Easy) Theorem Modulo spacetime translations, the only translating solutions to curve shortening flow with bulk velocity $v=e_{2}$ are

- the vertical line $\left\{\mathrm{L}_{t}\right\}_{t \in(-\infty, \infty)}$, where $\mathrm{L}_{t}:=\{(0, y): y \in \mathbb{R}\}$, and

Translating solutions

Translating solutions are an important special class of ancient solutions.
(Easy) Theorem Modulo spacetime translations, the only translating solutions to curve shortening flow with bulk velocity $v=e_{2}$ are

- the vertical line $\left\{\mathrm{L}_{t}\right\}_{t \in(-\infty, \infty)}$, where $\mathrm{L}_{t}:=\{(0, y): y \in \mathbb{R}\}$, and
- the Grim Reaper $\left\{\mathrm{G}_{t}\right\}_{t \in(-\infty, \infty)}$, where $\mathrm{G}_{t}:=\left\{(x,-\log \cos x+t): x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right\}$.

Translating solutions

Translating solutions are an important special class of ancient solutions.
(Easy) Theorem Modulo spacetime translations, the only translating solutions to curve shortening flow with bulk velocity $v=e_{2}$ are

- the vertical line $\left\{\mathrm{L}_{t}\right\}_{t \in(-\infty, \infty)}$, where $\mathrm{L}_{t}:=\{(0, y): y \in \mathbb{R}\}$, and
- the Grim Reaper $\left\{\mathrm{G}_{t}\right\}_{t \in(-\infty, \infty)}$, where $\mathrm{G}_{t}:=\left\{(x,-\log \cos x+t): x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right\}$.

Figure: Snapshots of the Grim Reaper (with bulk velocity $v=e_{1}$).

Convex ancient solutions to curve shortening flow I

The soliton examples (e.g. shrinking circles, stationary lines and Grim Reapers) are trivially ancient solutions to mean curvature flow in that they are determined by a fixed timeslice.

Convex ancient solutions to curve shortening flow I

The soliton examples (e.g. shrinking circles, stationary lines and Grim Reapers) are trivially ancient solutions to mean curvature flow in that they are determined by a fixed timeslice.

There is a famous non-trivial example, $\left\{\mathrm{A}_{t}\right\}_{t \in(-\infty, 0)}$, called the Angenent oval, where $\mathrm{A}_{t}:=\left\{(x, y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): \cos x=\mathrm{e}^{t} \cosh y\right\}$.

Convex ancient solutions to curve shortening flow I

The soliton examples (e.g. shrinking circles, stationary lines and Grim Reapers) are trivially ancient solutions to mean curvature flow in that they are determined by a fixed timeslice.

There is a famous non-trivial example, $\left\{\mathrm{A}_{t}\right\}_{t \in(-\infty, 0)}$, called the Angenent oval, where $\mathrm{A}_{t}:=\left\{(x, y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): \cos x=\mathrm{e}^{t} \cosh y\right\}$.

Figure: Snapshots of the Angenent oval.

Convex ancient solutions to curve shortening flow I

The soliton examples (e.g. shrinking circles, stationary lines and Grim Reapers) are trivially ancient solutions to mean curvature flow in that they are determined by a fixed timeslice.

There is a famous non-trivial example, $\left\{\mathrm{A}_{t}\right\}_{t \in(-\infty, 0)}$, called the Angenent oval, where $\mathrm{A}_{t}:=\left\{(x, y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): \cos x=\mathrm{e}^{t} \cosh y\right\}$.

Figure: Snapshots of the Angenent oval.

Theorem (DASKALOPOULOS-HAMILTON-ŠEŠUM) The shrinking circles and Angenent ovals are the only convex, compact ancient solutions to curve shortening flow.

Convex ancient solutions to curve shortening flow I

The soliton examples (e.g. shrinking circles, stationary lines and Grim Reapers) are trivially ancient solutions to mean curvature flow in that they are determined by a fixed timeslice.
There is a famous non-trivial example, $\left\{\mathrm{A}_{t}\right\}_{t \in(-\infty, 0)}$, called the Angenent oval, where $\mathrm{A}_{t}:=\left\{(x, y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): \cos x=\mathrm{e}^{t} \cosh y\right\}$.

Figure: Snapshots of the Angenent oval.

Theorem (Daskalopoulos-Hamilton-Šešum) The shrinking circles and Angenent ovals are the only convex, compact ancient solutions to curve shortening flow.
Proof is based on the analysis of a certain Lyapunov functional.

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).
Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).
Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).
Proof idea: The monotonicity formula can be used to show that the blow-down $\lim _{\lambda \rightarrow 0}\left\{\lambda \mathcal{M}_{\lambda^{-2} t}\right\}_{t<0}$ is always a shrinking cylinder $\left\{\mathbb{R}^{k} \times S_{\sqrt{-2(n-k) t}}^{n-k}\right\}_{t<0}, k \in\{0, \ldots, n\}$ (interpreted as a stationary hyperplane of multiplicity either one or two when $k=n$).

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).
Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).
Proof idea: The monotonicity formula can be used to show that the blow-down $\lim _{\lambda \rightarrow 0}\left\{\lambda \mathcal{M}_{\lambda^{-2} t}\right\}_{t<0}$ is always a shrinking cylinder $\left\{\mathbb{R}^{k} \times S_{\sqrt{-2(n-k) t}}^{n-k}\right\}_{t<0}, k \in\{0, \ldots, n\}$ (interpreted as a stationary hyperplane of multiplicity either one or two when $k=n$).
It follows, in case $k<n$, that the solution is entire.

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).
Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).
Proof idea: The monotonicity formula can be used to show that the blow-down $\lim _{\lambda \rightarrow 0}\left\{\lambda \mathcal{M}_{\lambda^{-2} t}\right\}_{t<0}$ is always a shrinking cylinder $\left\{\mathbb{R}^{k} \times S_{\sqrt{-2(n-k) t}}^{n-k}\right\}_{t<0}, k \in\{0, \ldots, n\}$ (interpreted as a stationary hyperplane of multiplicity either one or two when $k=n$).
It follows, in case $k<n$, that the solution is entire.
In case $k=n$: if the multiplicity is one, the monotonicity formula implies that the solution is a stationary hyperplane;

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).
Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).
Proof idea: The monotonicity formula can be used to show that the blow-down $\lim _{\lambda \rightarrow 0}\left\{\lambda \mathcal{M}_{\lambda^{-2} t}\right\}_{t<0}$ is always a shrinking cylinder $\left\{\mathbb{R}^{k} \times S_{\sqrt{-2(n-k) t}}^{n-k}\right\}_{t<0}, k \in\{0, \ldots, n\}$ (interpreted as a stationary hyperplane of multiplicity either one or two when $k=n$).
It follows, in case $k<n$, that the solution is entire.
In case $k=n$: if the multiplicity is one, the monotonicity formula implies that the solution is a stationary hyperplane; if the multiplicity is two, the "width" grows like $o(\sqrt{-t})$. A clever iteration argument exploiting concavity properties of the arrival time shows that it is actually bounded.

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).

Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).
Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).
Wang also proved that the shrinking circles are the only entire convex ancient solutions when $n=1$ (and that the bowl soliton is the only entire convex translator when $n=2$).

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).
Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).
Wang also proved that the shrinking circles are the only entire convex ancient solutions when $n=1$ (and that the bowl soliton is the only entire convex translator when $n=2$).

Definition: A compact, convex ancient solution is called

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).
Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).

Wang also proved that the shrinking circles are the only entire convex ancient solutions when $n=1$ (and that the bowl soliton is the only entire convex translator when $n=2$).

Definition: A compact, convex ancient solution is called

- an ancient ovaloid if it is entire.

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).
Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).

Wang also proved that the shrinking circles are the only entire convex ancient solutions when $n=1$ (and that the bowl soliton is the only entire convex translator when $n=2$).
Definition: A compact, convex ancient solution is called

- an ancient ovaloid if it is entire.
- an ancient pancake if it lies in a slab region.

X.-J. Wang's dichotomy

A mean convex ancient solution is called entire if its arrival time is an entire function (i.e. $\cup_{t \in(-\infty, 0]} \mathcal{M}_{t}=\mathbb{R}^{n+1}$).
Theorem (X.-J. Wang) Every convex ancient solution to mean curvature flow is either entire or lies in a stationary slab region (the region between two parallel hyperplanes).

Wang also proved that the shrinking circles are the only entire convex ancient solutions when $n=1$ (and that the bowl soliton is the only entire convex translator when $n=2$).
Definition: A compact, convex ancient solution is called

- an ancient ovaloid if it is entire.
- an ancient pancake if it lies in a slab region.
N.b. Some authors require ancient ovaloids to be noncollapsing.

Convex ancient solutions to curve shortening flow II

Theorem (Bourni-L.-Tinaglia) The shrinking circles, Angenent ovals, stationary lines and Grim Reapers are the only convex ancient solutions to curve shortening flow.

Convex ancient solutions to curve shortening flow II

Theorem (Bourni-L.-Tinaglia) The shrinking circles, Angenent ovals, stationary lines and Grim Reapers are the only convex ancient solutions to curve shortening flow.

Proof:

Convex ancient solutions to curve shortening flow II

Theorem (Bourni-L.-Tinaglia) The shrinking circles, Angenent ovals, stationary lines and Grim Reapers are the only convex ancient solutions to curve shortening flow.
Proof:

- Wang's dichotomy implies that any solution which is not a shrinking circle lies in a slab region, $\left\{|x|<\frac{\pi}{2}\right\}$ say.

Convex ancient solutions to curve shortening flow II

Theorem (Bourni-L.-Tinaglia) The shrinking circles, Angenent ovals, stationary lines and Grim Reapers are the only convex ancient solutions to curve shortening flow.

Proof:

- Wang's dichotomy implies that any solution which is not a shrinking circle lies in a slab region, $\left\{|x|<\frac{\pi}{2}\right\}$ say.
- Hamilton's differential Harnack inequality implies that the 'tip' regions (where $\nu= \pm e_{2}$) converge as $t \rightarrow-\infty$ to translating solutions after translating the tip to the origin.

Convex ancient solutions to curve shortening flow II

Theorem (Bourni-L.-Tinaglia) The shrinking circles, Angenent ovals, stationary lines and Grim Reapers are the only convex ancient solutions to curve shortening flow.

Proof:

- Wang's dichotomy implies that any solution which is not a shrinking circle lies in a slab region, $\left\{|x|<\frac{\pi}{2}\right\}$ say.
- Hamilton's differential Harnack inequality implies that the 'tip' regions (where $\nu= \pm e_{2}$) converge as $t \rightarrow-\infty$ to translating solutions after translating the tip to the origin.
- Uniqueness of the Grim Reaper implies that the tips limit to (possibly scaled) Grim Reapers (stationary lines are ruled out since the limit lies in a parallel strip and has normal $\pm e_{2}$ at 0).

Convex ancient solutions to curve shortening flow II

Theorem (Bourni-L.-Tinaglia) The shrinking circles, Angenent ovals, stationary lines and Grim Reapers are the only convex ancient solutions to curve shortening flow.

Proof:

- Wang's dichotomy implies that any solution which is not a shrinking circle lies in a slab region, $\left\{|x|<\frac{\pi}{2}\right\}$ say.
- Hamilton's differential Harnack inequality implies that the 'tip' regions (where $\nu= \pm e_{2}$) converge as $t \rightarrow-\infty$ to translating solutions after translating the tip to the origin.
- Uniqueness of the Grim Reaper implies that the tips limit to (possibly scaled) Grim Reapers (stationary lines are ruled out since the limit lies in a parallel strip and has normal $\pm e_{2}$ at 0).
- An elementary enclosed area estimate implies that the scale of the limiting Grim Reapers is one.

Convex ancient solutions to curve shortening flow II

Theorem (Bourni-L.-Tinaglia) The shrinking circles, Angenent ovals, stationary lines and Grim Reapers are the only convex ancient solutions to curve shortening flow.

Proof:

- Wang's dichotomy implies that any solution which is not a shrinking circle lies in a slab region, $\left\{|x|<\frac{\pi}{2}\right\}$ say.
- Hamilton's differential Harnack inequality implies that the 'tip' regions (where $\nu= \pm e_{2}$) converge as $t \rightarrow-\infty$ to translating solutions after translating the tip to the origin.
- Uniqueness of the Grim Reaper implies that the tips limit to (possibly scaled) Grim Reapers (stationary lines are ruled out since the limit lies in a parallel strip and has normal $\pm e_{2}$ at 0).
- An elementary enclosed area estimate implies that the scale of the limiting Grim Reapers is one.
- The Alexandrov reflection principle can then be used to show that the solution is either the Grim Reaper or the Angenent oval.

Convex ancient solutions to curve shortening flow II

Figure: If the scale of the Grim Reaper forming at the tip is too small, its displacement, and hence also the enclosed area, is too large, since

$$
\frac{d}{d t} \operatorname{Area}(t)=-\int_{A}^{B} \kappa d s_{t} \quad \Longrightarrow \quad \operatorname{Area}(t) \lesssim-\pi t
$$

Further examples

Rigidity fails badly once convexity hypothesis is removed.

Further examples

Rigidity fails badly once convexity hypothesis is removed.

- Ancient trombones [Angenent-You]: Solutions which look like an arbitrary family of parallel, alternately oriented Grim Reapers glued together at $t=-\infty$.

Further examples

Rigidity fails badly once convexity hypothesis is removed.

- Ancient trombones [Angenent-You]: Solutions which look like an arbitrary family of parallel, alternately oriented Grim Reapers glued together at $t=-\infty$.
- Perturbations of shrinkers: By 'general nonsense’ center manifold analysis, perturbations along unstable modes of compact, entropy unstable shrinkers give rise to non-trivial ancient solutions [K. Choi-Mantoulidis].

Further examples

Rigidity fails badly once convexity hypothesis is removed.

- Ancient trombones [Angenent-You]: Solutions which look like an arbitrary family of parallel, alternately oriented Grim Reapers glued together at $t=-\infty$.
- Perturbations of shrinkers: By 'general nonsense’ center manifold analysis, perturbations along unstable modes of compact, entropy unstable shrinkers give rise to non-trivial ancient solutions [K. Choi-Mantoulidis]. (Explicit construction in case of 'ancient doughnuts' [Bourni-L.-Mramor].)

Further examples

Rigidity fails badly once convexity hypothesis is removed.

- Ancient trombones [Angenent-You]: Solutions which look like an arbitrary family of parallel, alternately oriented Grim Reapers glued together at $t=-\infty$.
- Perturbations of shrinkers: By 'general nonsense’ center manifold analysis, perturbations along unstable modes of compact, entropy unstable shrinkers give rise to non-trivial ancient solutions [K. Choi-Mantoulidis]. (Explicit construction in case of 'ancient doughnuts' [Bourni-L.-Mramor].) Such examples are compact but not (mean) convex.

Further examples

Rigidity fails badly once convexity hypothesis is removed.

- Ancient trombones [Angenent-You]: Solutions which look like an arbitrary family of parallel, alternately oriented Grim Reapers glued together at $t=-\infty$.
- Perturbations of shrinkers: By 'general nonsense’ center manifold analysis, perturbations along unstable modes of compact, entropy unstable shrinkers give rise to non-trivial ancient solutions [K. Choi-Mantoulidis]. (Explicit construction in case of 'ancient doughnuts' [Bourni-L.-Mramor].) Such examples are compact but not (mean) convex.
- The Reapernoid [Mramor-Payne]: explicit non-compact examples evolving out of catenoids (and certain other minimal hypersurfaces).

Ancient ovaloids

Theorem (White, X.-J. Wang, Haslhofer-Hershkovits) For each $k \in\{1, \ldots, n-1\}$, there exists an $O(k) \times O(n-k+1)$-symmetric ancient ovaloid $\left\{\mathcal{O}_{t}^{n, k}\right\}_{t \in(-\infty, 0)}$.

Ancient ovaloids

Theorem (White, X.-J. Wang, Haslhofer-Hershkovits) For each $k \in\{1, \ldots, n-1\}$, there exists an $O(k) \times O(n-k+1)$-symmetric ancient ovaloid $\left\{\mathcal{O}_{t}^{n, k}\right\}_{t \in(-\infty, 0)}$.

- Blow down: $\lambda^{-1} \mathcal{O}_{\lambda^{2} t}^{n, k} \rightarrow \mathbb{R}^{k} \times S_{\sqrt{-2(n-k) t}}^{n-k}$ as $\lambda \rightarrow \infty$.

Ancient ovaloids

Theorem (White, X.-J. Wang, Haslhofer-Hershkovits) For each $k \in\{1, \ldots, n-1\}$, there exists an $O(k) \times O(n-k+1)$-symmetric ancient ovaloid $\left\{\mathcal{O}_{t}^{n, k}\right\}_{t \in(-\infty, 0)}$.

- Blow down: $\lambda^{-1} \mathcal{O}_{\lambda^{2} t}^{n, k} \rightarrow \mathbb{R}^{k} \times S^{n-k} \sqrt{-2(n-k) t}$ as $\lambda \rightarrow \infty$.
- Asymptotic translators: For any $\phi \in S^{k-1} \times \mathbb{R}^{n-k+1}$,

$$
\lambda_{s}\left(\mathcal{O}_{\lambda_{s}^{2} t+t_{s}}^{n, k}-P_{s}\right) \rightarrow \mathbb{E}^{k-1}(\phi) \times \operatorname{Bowl}_{t}^{n-k+1}
$$

where $\nu\left(P_{s}\right)=\phi, \lambda_{s}:=H^{-1}\left(P_{s}\right)$ and $\mathbb{E}^{k-1}(\phi)=\phi^{\perp} \subset \mathbb{R}^{k}$.

Ancient ovaloids

Theorem (White, X.-J. Wang, Haslhofer-Hershkovits) For each $k \in\{1, \ldots, n-1\}$, there exists an $O(k) \times O(n-k+1)$-symmetric ancient ovaloid $\left\{\mathcal{O}_{t}^{n, k}\right\}_{t \in(-\infty, 0)}$.

- Blow down: $\lambda^{-1} \mathcal{O}_{\lambda^{2} t}^{n, k} \rightarrow \mathbb{R}^{k} \times S^{n-k} \sqrt{-2(n-k) t}$ as $\lambda \rightarrow \infty$.
- Asymptotic translators: For any $\phi \in S^{k-1} \times \mathbb{R}^{n-k+1}$,

$$
\lambda_{s}\left(\mathcal{O}_{\lambda_{s}^{2} t+t_{s}}^{n, k}-P_{s}\right) \rightarrow \mathbb{E}^{k-1}(\phi) \times \operatorname{Bowl}_{t}^{n-k+1},
$$

where $\nu\left(P_{s}\right)=\phi, \lambda_{s}:=H^{-1}\left(P_{s}\right)$ and $\mathbb{E}^{k-1}(\phi)=\phi^{\perp} \subset \mathbb{R}^{k}$.
Theorem (Angenent-Daskalopoulos-Šešum) $\left\{\mathcal{O}_{t}^{n, 1}\right\}_{t \in(-\infty, 0)}$ is the only ancient ovaloid in \mathbb{R}^{n+1} which is noncollapsing and (when $n \geq 3$) uniformly two-convex.

Ancient ovaloids

Figure: Snapshots of the ancient ovaloid of White, X.-J. Wang, Haslhofer-Hershkovits and Angenent-Daskalopoulos-Sešum.

Ancient pancakes

Theorem (X.-J. Wang, Bourni-L.-Tinaglia) There exists an $O(1) \times O(n)$-invariant ancient pancake $\left\{\Pi_{t}^{n}\right\}_{t \in(-\infty, 0)}$ in \mathbb{R}^{n+1} for each n.

Ancient pancakes

Theorem (X.-J. Wang, Bourni-L.-Tinaglia) There exists an $O(1) \times O(n)$-invariant ancient pancake $\left\{\Pi_{t}^{n}\right\}_{t \in(-\infty, 0)}$ in \mathbb{R}^{n+1} for each n.

- Blow-down: $\Pi_{t+s}^{n} \rightarrow\left\{ \pm \frac{\pi}{2}\right\} \times \mathbb{R}^{n}$ as $s \rightarrow-\infty$.

Ancient pancakes

Theorem (X.-J. Wang, Bourni-L.-Tinaglia) There exists an $O(1) \times O(n)$-invariant ancient pancake $\left\{\Pi_{t}^{n}\right\}_{t \in(-\infty, 0)}$ in \mathbb{R}^{n+1} for each n.

- Blow-down: $\Pi_{t+s}^{n} \rightarrow\left\{ \pm \frac{\pi}{2}\right\} \times \mathbb{R}^{n}$ as $s \rightarrow-\infty$.
- Asymptotic translators: $\Pi_{t+s}^{n}-P\left(e_{2}, s\right) \rightarrow \mathrm{G}_{t}^{n}$ as $s \rightarrow-\infty$.

Ancient pancakes

Theorem (X.-J. Wang, Bourni-L.-Tinaglia) There exists an $O(1) \times O(n)$-invariant ancient pancake $\left\{\Pi_{t}^{n}\right\}_{t \in(-\infty, 0)}$ in \mathbb{R}^{n+1} for each n.

- Blow-down: $\Pi_{t+s}^{n} \rightarrow\left\{ \pm \frac{\pi}{2}\right\} \times \mathbb{R}^{n}$ as $s \rightarrow-\infty$.
- Asymptotic translators: $\Pi_{t+s}^{n}-P\left(e_{2}, s\right) \rightarrow \mathrm{G}_{t}^{n}$ as $s \rightarrow-\infty$.
- For every $k \in \mathbb{N}$,

$$
H\left(e_{1}, t\right) \leq o\left(\frac{1}{(-t)^{k}}\right) \text { and } P\left(e_{1}, t\right) \cdot e_{1} \geq \frac{\pi}{2}-o\left(\frac{1}{(-t)^{k}}\right) .
$$

Ancient pancakes

Theorem (X.-J. Wang, Bourni-L.-Tinaglia) There exists an $O(1) \times O(n)$-invariant ancient pancake $\left\{\Pi_{t}^{n}\right\}_{t \in(-\infty, 0)}$ in \mathbb{R}^{n+1} for each n.

- Blow-down: $\Pi_{t+s}^{n} \rightarrow\left\{ \pm \frac{\pi}{2}\right\} \times \mathbb{R}^{n}$ as $s \rightarrow-\infty$.
- Asymptotic translators: $\Pi_{t+s}^{n}-P\left(e_{2}, s\right) \rightarrow \mathrm{G}_{t}^{n}$ as $s \rightarrow-\infty$.
- For every $k \in \mathbb{N}$,

$$
H\left(e_{1}, t\right) \leq o\left(\frac{1}{(-t)^{k}}\right) \text { and } P\left(e_{1}, t\right) \cdot e_{1} \geq \frac{\pi}{2}-o\left(\frac{1}{(-t)^{k}}\right) \text {. }
$$

- If $z \in S^{2} \backslash\left\{ \pm e_{1}\right\}$, then
$H(z, t) \sim\left|z \cdot e_{2}\right|\left(1+\frac{n-1}{-t}\right)$ and $P(z, t) \cdot z \sim\left|z \cdot e_{2}\right|\left(-t+(n-1) \log (-t)+c_{n}\right)$.

Ancient pancakes

Theorem (X.-J. Wang, Bourni-L.-Tinaglia) There exists an $O(1) \times O(n)$-invariant ancient pancake $\left\{\Pi_{t}^{n}\right\}_{t \in(-\infty, 0)}$ in \mathbb{R}^{n+1} for each n.

- Blow-down: $\Pi_{t+s}^{n} \rightarrow\left\{ \pm \frac{\pi}{2}\right\} \times \mathbb{R}^{n}$ as $s \rightarrow-\infty$.
- Asymptotic translators: $\Pi_{t+s}^{n}-P\left(e_{2}, s\right) \rightarrow \mathrm{G}_{t}^{n}$ as $s \rightarrow-\infty$.
- For every $k \in \mathbb{N}$,

$$
H\left(e_{1}, t\right) \leq o\left(\frac{1}{(-t)^{k}}\right) \text { and } P\left(e_{1}, t\right) \cdot e_{1} \geq \frac{\pi}{2}-o\left(\frac{1}{(-t)^{k}}\right) \text {. }
$$

- If $z \in S^{2} \backslash\left\{ \pm e_{1}\right\}$, then
$H(z, t) \sim\left|z \cdot e_{2}\right|\left(1+\frac{n-1}{-t}\right)$ and $P(z, t) \cdot z \sim\left|z \cdot e_{2}\right|\left(-t+(n-1) \log (-t)+c_{n}\right)$.
It is unique amongst ancient pancakes with $O(n)$-symmetry.

Ancient pancakes

Theorem (X.-J. Wang, Bourni-L.-Tinaglia) There exists an $O(1) \times O(n)$-invariant ancient pancake $\left\{\Pi_{t}^{n}\right\}_{t \in(-\infty, 0)}$ in \mathbb{R}^{n+1} for each n.

- Blow-down: $\Pi_{t+s}^{n} \rightarrow\left\{ \pm \frac{\pi}{2}\right\} \times \mathbb{R}^{n}$ as $s \rightarrow-\infty$.
- Asymptotic translators: $\Pi_{t+s}^{n}-P\left(e_{2}, s\right) \rightarrow \mathrm{G}_{t}^{n}$ as $s \rightarrow-\infty$.
- For every $k \in \mathbb{N}$,

$$
H\left(e_{1}, t\right) \leq o\left(\frac{1}{(-t)^{k}}\right) \quad \text { and } P\left(e_{1}, t\right) \cdot e_{1} \geq \frac{\pi}{2}-o\left(\frac{1}{(-t)^{k}}\right) \text {. }
$$

- If $z \in S^{2} \backslash\left\{ \pm e_{1}\right\}$, then
$H(z, t) \sim\left|z \cdot e_{2}\right|\left(1+\frac{n-1}{-t}\right)$ and $P(z, t) \cdot z \sim\left|z \cdot e_{2}\right|\left(-t+(n-1) \log (-t)+c_{n}\right)$.
It is unique amongst ancient pancakes with $O(n)$-symmetry.
Note that there can be no examples with $O(k) \times O(n-k)$-symmetry when $k>1$ (the shrinking cylinder is a barrier).

Ancient pancakes

Figure: Snapshots of the rotationally symmetric ancient pancake.

Ancient pancakes

Our solution is the limit of a family of 'old' solutions evolving from rotated timeslices of the Angenent oval.

Ancient pancakes

Our solution is the limit of a family of 'old' solutions evolving from rotated timeslices of the Angenent oval.

The uniqueness follows a similar philosophy as the one-dimensional case;

Ancient pancakes

Our solution is the limit of a family of 'old' solutions evolving from rotated timeslices of the Angenent oval.

The uniqueness follows a similar philosophy as the one-dimensional case; but is complicated by the additional 'rotational' terms, which need to be controlled.

Ancient pancakes

Our solution is the limit of a family of 'old' solutions evolving from rotated timeslices of the Angenent oval.

The uniqueness follows a similar philosophy as the one-dimensional case; but is complicated by the additional 'rotational' terms, which need to be controlled. The key is to obtain uniqueness of the asymptotic translators and a good estimate for $\left|P\left(e_{2}, t\right)\right|$.

Ancient pancakes

Our solution is the limit of a family of 'old' solutions evolving from rotated timeslices of the Angenent oval.

The uniqueness follows a similar philosophy as the one-dimensional case; but is complicated by the additional 'rotational' terms, which need to be controlled. The key is to obtain uniqueness of the asymptotic translators and a good estimate for $\left|P\left(e_{2}, t\right)\right|$.

Remarks: 'Existence' is harder than for ovaloids, since 'scaling is not allowed'.

Ancient pancakes

Our solution is the limit of a family of 'old' solutions evolving from rotated timeslices of the Angenent oval.

The uniqueness follows a similar philosophy as the one-dimensional case; but is complicated by the additional 'rotational' terms, which need to be controlled. The key is to obtain uniqueness of the asymptotic translators and a good estimate for $\left|P\left(e_{2}, t\right)\right|$.

Remarks: 'Existence' is harder than for ovaloids, since 'scaling is not allowed'. Uniqueness is (hard, but) easier than for ovaloids since 'scaling is unnecessary' and (surprisingly) no analysis of the 'intermediate region' is needed.

