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Liouville’s Theorem

Theorem (Liouville): Bounded entire harmonic functions are constant.

Proof [following Nelson]: Given two points, consider two balls of equal
radius with the given points as centers. If the radius is large enough, the
two balls will coincide except for an arbitrarily small proportion of their
volume. Since the harmonic function is bounded, the averages of it over
the two balls are arbitrarily close; so, by the mean value property, it must
assume the same value at both points. �

Moral: Diffusion smooths-out, absolute diffusion smooths-out
absolutely...

... but this, like all morals, is of limited use: There exist nontrivial
(unbounded) entire harmonic functions, such as (x , y) 7→ x2 − y2.

*Liouville’s theorem actually holds assuming only a one-sided bound
(which can be replaced by a sublinear growth rate).
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Liouville’s Theorem

Liouville’s theorem also holds in manifolds of non-negative Ricci
curvature.

The result follows from the Cheng–Yau gradient estimate: If (M, g)
satisfies Rc ≥ −Kg , K > 0, and u ∈ C∞(Br (x)) is a positive harmonic
function, then

max
Br/2(x)

|∇u|
u
≤ cn

(
r−1 +

√
K
)
.

This is obtained using cut-off functions and the maximum principle.

Similar methods were later used by Li–Yau and Hamilton to obtain
differential Harnack inequalities for parabolic equations.
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Bernstein’s Theorem

Theorem (Bernstein): Entire minimal graphs are flat.

Proof: The idea is to show that

lim
r→∞

∫
Br

|A|2 = 0.

This uses the minimizing property of minimal graphs over convex
domains, the stability inequality, and the “logarithmic cut-off trick”. �

By ruling out the existence of stable minimal cones in low dimensions,
Bernstein’s Theorem holds up to (ambient) dimension 7 [Fleming, de
Giorgi, Almgren, Simons].

There are counterexamples in dimensions 8 and higher [Simons,
Bonbieri–de Giorgi–Giusti].
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The heat equation

Consider now a solution u : Rn × (α, ω)→ R to the heat equation

∂tu = ∆u .

Here, diffusion acts “forwards in time”, so there should exist few
solutions defined for t ∈ (−∞,T ). I.e. ancient solutions.

Theorem (Souplet–Zhang) Let u be an ancient solution to the heat
equation on Rn.

– If 0 ≤ u(x , t) ≤ eo(|x|+
√
−t), then u is constant.

– If u(x , t) ≤ o(|x |+
√
−t), then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville’s theorem):
If u ∈ C∞(Pr (x , t)) is a non-negative solution to the heat equation, then

|∇u(x , t)|
u(x , t)

≤ cn
(
r−1 +

√
K
)(

1 + log

(
supPr (x,t) u

u(x , t)

))
in Pr/2(x , t)

These are again obtained using cut-off functions and the maximum
principle. �

4 / 21



The heat equation

Consider now a solution u : Rn × (α, ω)→ R to the heat equation

∂tu = ∆u .

Here, diffusion acts “forwards in time”, so there should exist few
solutions defined for t ∈ (−∞,T ). I.e. ancient solutions.

Theorem (Souplet–Zhang) Let u be an ancient solution to the heat
equation on Rn.

– If 0 ≤ u(x , t) ≤ eo(|x|+
√
−t), then u is constant.

– If u(x , t) ≤ o(|x |+
√
−t), then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville’s theorem):
If u ∈ C∞(Pr (x , t)) is a non-negative solution to the heat equation, then

|∇u(x , t)|
u(x , t)

≤ cn
(
r−1 +

√
K
)(

1 + log

(
supPr (x,t) u

u(x , t)

))
in Pr/2(x , t)

These are again obtained using cut-off functions and the maximum
principle. �

4 / 21



The heat equation

Consider now a solution u : Rn × (α, ω)→ R to the heat equation

∂tu = ∆u .

Here, diffusion acts “forwards in time”, so there should exist few
solutions defined for t ∈ (−∞,T ). I.e. ancient solutions.

Theorem (Souplet–Zhang) Let u be an ancient solution to the heat
equation on Rn.

– If 0 ≤ u(x , t) ≤ eo(|x|+
√
−t), then u is constant.

– If u(x , t) ≤ o(|x |+
√
−t), then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville’s theorem):
If u ∈ C∞(Pr (x , t)) is a non-negative solution to the heat equation, then

|∇u(x , t)|
u(x , t)

≤ cn
(
r−1 +

√
K
)(

1 + log

(
supPr (x,t) u

u(x , t)

))
in Pr/2(x , t)

These are again obtained using cut-off functions and the maximum
principle. �

4 / 21



The heat equation

Consider now a solution u : Rn × (α, ω)→ R to the heat equation

∂tu = ∆u .

Here, diffusion acts “forwards in time”, so there should exist few
solutions defined for t ∈ (−∞,T ). I.e. ancient solutions.

Theorem (Souplet–Zhang) Let u be an ancient solution to the heat
equation on Rn.

– If 0 ≤ u(x , t) ≤ eo(|x|+
√
−t), then u is constant.

– If u(x , t) ≤ o(|x |+
√
−t), then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville’s theorem):
If u ∈ C∞(Pr (x , t)) is a non-negative solution to the heat equation, then

|∇u(x , t)|
u(x , t)

≤ cn
(
r−1 +

√
K
)(

1 + log

(
supPr (x,t) u

u(x , t)

))
in Pr/2(x , t)

These are again obtained using cut-off functions and the maximum
principle. �

4 / 21



The heat equation

Consider now a solution u : Rn × (α, ω)→ R to the heat equation

∂tu = ∆u .

Here, diffusion acts “forwards in time”, so there should exist few
solutions defined for t ∈ (−∞,T ). I.e. ancient solutions.

Theorem (Souplet–Zhang) Let u be an ancient solution to the heat
equation on Rn.

– If 0 ≤ u(x , t) ≤ eo(|x|+
√
−t), then u is constant.

– If u(x , t) ≤ o(|x |+
√
−t), then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville’s theorem):
If u ∈ C∞(Pr (x , t)) is a non-negative solution to the heat equation, then

|∇u(x , t)|
u(x , t)

≤ cn
(
r−1 +

√
K
)(

1 + log

(
supPr (x,t) u

u(x , t)

))
in Pr/2(x , t)

These are again obtained using cut-off functions and the maximum
principle. �

4 / 21



The heat equation

Consider now a solution u : Rn × (α, ω)→ R to the heat equation

∂tu = ∆u .

Here, diffusion acts “forwards in time”, so there should exist few
solutions defined for t ∈ (−∞,T ). I.e. ancient solutions.

Theorem (Souplet–Zhang) Let u be an ancient solution to the heat
equation on Rn.

– If 0 ≤ u(x , t) ≤ eo(|x|+
√
−t), then u is constant.

– If u(x , t) ≤ o(|x |+
√
−t), then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville’s theorem):

If u ∈ C∞(Pr (x , t)) is a non-negative solution to the heat equation, then

|∇u(x , t)|
u(x , t)

≤ cn
(
r−1 +

√
K
)(

1 + log

(
supPr (x,t) u

u(x , t)

))
in Pr/2(x , t)

These are again obtained using cut-off functions and the maximum
principle. �

4 / 21



The heat equation

Consider now a solution u : Rn × (α, ω)→ R to the heat equation

∂tu = ∆u .

Here, diffusion acts “forwards in time”, so there should exist few
solutions defined for t ∈ (−∞,T ). I.e. ancient solutions.

Theorem (Souplet–Zhang) Let u be an ancient solution to the heat
equation on Rn.

– If 0 ≤ u(x , t) ≤ eo(|x|+
√
−t), then u is constant.

– If u(x , t) ≤ o(|x |+
√
−t), then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville’s theorem):
If u ∈ C∞(Pr (x , t)) is a non-negative solution to the heat equation, then

|∇u(x , t)|
u(x , t)

≤ cn
(
r−1 +

√
K
)(

1 + log

(
supPr (x,t) u

u(x , t)

))
in Pr/2(x , t)

These are again obtained using cut-off functions and the maximum
principle. �

4 / 21



The heat equation

Consider now a solution u : Rn × (α, ω)→ R to the heat equation

∂tu = ∆u .

Here, diffusion acts “forwards in time”, so there should exist few
solutions defined for t ∈ (−∞,T ). I.e. ancient solutions.

Theorem (Souplet–Zhang) Let u be an ancient solution to the heat
equation on Rn.

– If 0 ≤ u(x , t) ≤ eo(|x|+
√
−t), then u is constant.

– If u(x , t) ≤ o(|x |+
√
−t), then u is constant.

Proof: Again based on sharp gradient estimates (cf. Liouville’s theorem):
If u ∈ C∞(Pr (x , t)) is a non-negative solution to the heat equation, then

|∇u(x , t)|
u(x , t)

≤ cn
(
r−1 +

√
K
)(

1 + log

(
supPr (x,t) u

u(x , t)

))
in Pr/2(x , t)

These are again obtained using cut-off functions and the maximum
principle. �

4 / 21



The heat equation

Theorem (Souplet–Zhang) Let u be an ancient solution to the heat
equation on Rn.

– If 0 ≤ u(x , t) ≤ eo(|x|+
√
−t), then u is constant.

– If u(x , t) ≤ o(|x |+
√
−t), then u is constant.

Hypotheses are necessary: Consider the traveling wave solutions
(x , t) 7→ eλx1+λ

2t and the affine solutions (x , t) 7→ ax + b.

The theorem also applies to ancient solutions to the heat equation on
Riemannian manifolds of non-negative Ricci curvature.

Similar results can be obtained in the presence of appropriate boundary
conditions via the modulus of continuity estimates of Clutterbuck.

The point here is that the modulus of continuity

ω(s, t) := sup

{
u(x , t)− u(y , t)

2
:
d(x , y)

2
= s

}
of a solution to the heat equation is a subsolution to the one-dimensional
heat equation (with induced boundary conditions).
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Semilinear heat equations

Consider now solutions u : Rn × (α, ω)→ R to the semi-linear heat
equation

∂tu = ∆u + |u|p−1u
for subcritical exponents 1 < p < n+2

n−2 .

Solutions blow-up in finite time and are modeled by ancient solutions.

Theorem (Merle–Zaag) Let u : Rn × (−∞, ω)→ R be a positive
ancient solution to the semi-linear heat equation. If

u(x , t) ≤ O((ω − t)−
1

p−1 ) ,

then
u(x , t) = 0 , or u(x , t) = (C + (p − 1)(ω − t))−

1
p−1 .

Proof is based on the analysis of a Lyapunov functional.
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Mean curvature flow

A family {Mn
t }t∈I of hypersurfaces Mn

t ⊂ Rn+1 satisfies mean
curvature flow if

∂tX (x , t) = ~H(x , t)

for some parametrization X : Mn × I → Rn+1, where
~H(·, t) = div(DX (·, t)) is the mean curvature vector of Mn

t .

If the time-slices Mn
t are mean convex boundaries, Mn

t = ∂Ωt , then,
equivalently, the arrival time u : ∪t∈IMt → R defined by

u(X ) = t ⇐⇒ X ∈Mn
t

satisfies the level set flow:

−|Du| div

(
Du

|Du|

)
= 1 .
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Mean curvature flow

A solution {Mn
t }t∈I is referred to as ancient if (−∞, t0) ⊂ I for some

t0 ∈ R (w.l.o.g. t0 = 0). Equivalently for mean convex solutions, the
arrival time u is a complete function.

(Convex) ancient solutions arise as singularity models for (mean
convex) mean curvature flow.

Indeed, suppose that λj := |A(pj ,tj )| → ∞ as j →∞ for pj ∈Mtj , tj ∈ I ,
and consider the rescaled flows

Mj
t := λj(Mλ−2t+tj − pj) , for t ∈ λ2j I − tj .

If the sequence converges, then it will converge to an ancient solution
since λ2j I − tj → (−∞,∞).

Moreover, if the Mt are mean convex, then the blow-up is convex
Huisken–Sinestrari.

Thus, if we can understand (convex) ancient solutions, we can understand
the local geometry of (mean convex) solutions about their singularities.
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Mean curvature flow

Prototypical examples are the shrinking sphere, {Sn√
−2nt}t<0, and the

shrinking cylinders {Rk × Sn−k√
−2(n−k)t

}t<0, k ∈ {0, . . . , n}.

Theorem [Haslhofer–Hershkovits, Huisken–Sinestrari,
X.-J. Wang] The shrinking sphere is unique amongst ancient solutions
satisfying mild geometric hypotheses (such as uniform pinching).

See also [Bryan–Louie, Bryan–Ivaki–Scheuer,
K. Choi–Mantoulidis, Huisken–Sinestrari,
Lambert–Lotay–Schulze, L., L.–Lynch, Lynch–Nguyen,
Risa–Sinestrari, Sonnanburg]
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Monotonicity formulae and self-similar solutions
Monotonicity of Gaussian area [Huisken]:

d

dt

∫
Mn

t

(−4πt)−
n
2 e−

|X|2
−4t dX ≤ −

∫
Mn

t

∣∣∣∣ ~H +
X⊥

−2t

∣∣∣∣2 (−4πt)−
n
2 e−

|X|2
−4t dX .

The inequality is strict unless {Mn
t }t∈(α,0) is a shrinking solution:

Mt =
√
−tM−1, t < 0.

Differential Harnack inequality [Hamilton]:If {Mn
t }t∈(0,ω) is strictly

convex, then (with respect to the Gauss map parametrization)

∂t

(√
tH
)
≥ 0 .

The inequality is strict unless {Mn
t }t∈(0,ω) is an expanding solution:

Mt =
√
tM1, t > 0.

For ancient solutions,
∂tH ≥ 0

with strict inequality unless {Mn
t }t∈(−∞,ω) is a translating solution:

Mt =M0 + te, t ∈ R for some e ∈ Rn+1.
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Shrinking solutions

For each pair of relatively prime (p, q) satisfying 1
2 <

p
q <

√
2
2 , there is a

closed self-shrinking solution to curve shortening flow {Γp,q
t }t∈(−∞,0))

such that Γp,q
−1 has rotation index p, lies in an annulus about the origin,

and touches each boundary of the annulus q times.

Shrinking solutions are critical points of the Gaussian area

F (M−1) :=

∫
M−1

e−
|X|2
4 dHn(X ) .

Theorem [Colding–Minicozzi, Huisken] The shrinking cylinders
Rm × Sn−m√

−2(n−m)t
and the Abresch–Langer cylinders Rn−1 × Γp,q

t are the

only properly immersed, mean convex shrinkers with finite Gaussian area.
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Shrinking solutions

Many further examples which are not mean convex are known via a
variety of methods [Angenent, Drugan, Kapouleas, Ketover,
Kleene, McGrath, Moller, Nguyen]

Brendle: the shrinking sphere is the only compact, embedded example
of genus zero in R3.

Mramor–S. Wang: embedded genus one shrinkers in R3 are
unknotted.

Open question: Is Angenent’s torus the only compact, embedded, genus
1 shrinker in R3?
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Translating solutions

Translating solutions are an important special class of ancient solutions.

(Easy) Theorem Modulo spacetime translations, the only translating
solutions to curve shortening flow with bulk velocity v = e2 are

– the vertical line {Lt}t∈(−∞,∞), where Lt := {(0, y) : y ∈ R}, and

– the Grim Reaper {Gt}t∈(−∞,∞), where
Gt := {(x ,− log cos x + t) : x ∈ (−π2 ,

π
2 )}.

Figure: Snapshots of the Grim Reaper (with bulk velocity v = e1).
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Convex ancient solutions to curve shortening flow I

The soliton examples (e.g. shrinking circles, stationary lines and Grim
Reapers) are trivially ancient solutions to mean curvature flow in that
they are determined by a fixed timeslice.

There is a famous non-trivial example, {At}t∈(−∞,0), called the
Angenent oval, where At := {(x , y) ∈ (−π2 ,

π
2 ) : cos x = et cosh y}.

Figure: Snapshots of the Angenent oval.

Theorem (Daskalopoulos–Hamilton–Šešum) The shrinking circles
and Angenent ovals are the only convex, compact ancient solutions to
curve shortening flow.

Proof is based on the analysis of a certain Lyapunov functional.
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X.-J. Wang’s dichotomy

A mean convex ancient solution is called entire if its arrival time is an
entire function (i.e. ∪t∈(−∞,0]Mt = Rn+1).

Theorem (X.-J. Wang) Every convex ancient solution to mean
curvature flow is either entire or lies in a stationary slab region (the
region between two parallel hyperplanes).

Proof idea: The monotonicity formula can be used to show that the
blow-down limλ→0{λMλ−2t}t<0 is always a shrinking cylinder
{Rk × Sn−k√

−2(n−k)t
}t<0, k ∈ {0, . . . , n} (interpreted as a stationary

hyperplane of multiplicity either one or two when k = n).

It follows, in case k < n, that the solution is entire.

In case k = n: if the multiplicity is one, the monotonicity formula implies
that the solution is a stationary hyperplane; if the multiplicity is two, the
“width” grows like o(

√
−t). A clever iteration argument exploiting

concavity properties of the arrival time shows that it is actually
bounded.
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Wang also proved that the shrinking circles are the only entire convex
ancient solutions when n = 1 (and that the bowl soliton is the only
entire convex translator when n = 2).

Definition: A compact, convex ancient solution is called

– an ancient ovaloid if it is entire.

– an ancient pancake if it lies in a slab region.

N.b. Some authors require ancient ovaloids to be noncollapsing.
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Convex ancient solutions to curve shortening flow II

Theorem (Bourni–L.–Tinaglia) The shrinking circles, Angenent
ovals, stationary lines and Grim Reapers are the only convex ancient
solutions to curve shortening flow.

Proof:

– Wang’s dichotomy implies that any solution which is not a shrinking
circle lies in a slab region, {|x | < π

2 } say.

– Hamilton’s differential Harnack inequality implies that the ‘tip’
regions (where ν = ±e2) converge as t → −∞ to translating
solutions after translating the tip to the origin.

– Uniqueness of the Grim Reaper implies that the tips limit to
(possibly scaled) Grim Reapers (stationary lines are ruled out since
the limit lies in a parallel strip and has normal ±e2 at 0).

– An elementary enclosed area estimate implies that the scale of the
limiting Grim Reapers is one.

– The Alexandrov reflection principle can then be used to show that
the solution is either the Grim Reaper or the Angenent oval.
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Convex ancient solutions to curve shortening flow II

Figure: If the scale of the Grim Reaper forming at the tip is too small, its
displacement, and hence also the enclosed area, is too large, since

d
dt
Area(t) = −

∫ B
A κ dst =⇒ Area(t) . −πt.



Further examples

Rigidity fails badly once convexity hypothesis is removed.

– Ancient trombones [Angenent–You]: Solutions which look like an
arbitrary family of parallel, alternately oriented Grim Reapers glued
together at t = −∞.

– Perturbations of shrinkers: By ‘general nonsense’ center manifold
analysis, perturbations along unstable modes of compact, entropy
unstable shrinkers give rise to non-trivial ancient solutions
[K. Choi–Mantoulidis]. (Explicit construction in case of ‘ancient
doughnuts’ [Bourni–L.–Mramor].) Such examples are compact but
not (mean) convex.

– The Reapernoid [Mramor–Payne]: explicit non-compact examples
evolving out of catenoids (and certain other minimal hypersurfaces).
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Ancient ovaloids

Theorem (White, X.-J. Wang, Haslhofer–Hershkovits) For
each k ∈ {1, . . . , n − 1}, there exists an O(k)× O(n − k + 1)-symmetric

ancient ovaloid {On,k
t }t∈(−∞,0).

– Blow down: λ−1On,k
λ2t → Rk × Sn−k√

−2(n−k)t
as λ→∞.

– Asymptotic translators: For any φ ∈ Sk−1 × Rn−k+1,

λs(On,k
λ2
s t+ts

− Ps)→ Ek−1(φ)× Bowln−k+1
t ,

where ν(Ps) = φ, λs := H−1(Ps) and Ek−1(φ) = φ⊥ ⊂ Rk .

Theorem (Angenent–Daskalopoulos–Šešum) {On,1
t }t∈(−∞,0) is

the only ancient ovaloid in Rn+1 which is noncollapsing and (when
n ≥ 3) uniformly two-convex.
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Ancient ovaloids

Figure: Snapshots of the ancient ovaloid of White, X.-J. Wang,
Haslhofer–Hershkovits and Angenent–Daskalopoulos–Šešum.



Ancient pancakes

Theorem (X.-J. Wang, Bourni–L.–Tinaglia) There exists an
O(1)×O(n)-invariant ancient pancake {Πn

t }t∈(−∞,0) in Rn+1 for each n.

– Blow-down: Πn
t+s → {±π2 } × Rn as s → −∞.

– Asymptotic translators: Πn
t+s − P(e2, s)→ Gn

t as s → −∞.

– For every k ∈ N,

H(e1, t) ≤ o

(
1

(−t)k

)
and P(e1, t) · e1 ≥

π

2
− o

(
1

(−t)k

)
.

– If z ∈ S2 \ {±e1}, then

H(z , t) ∼ |z ·e2|
(

1 +
n − 1

−t

)
and P(z , t)·z ∼ |z ·e2|(−t + (n − 1) log(−t) + cn) .

It is unique amongst ancient pancakes with O(n)-symmetry.

Note that there can be no examples with O(k)× O(n − k)-symmetry
when k > 1 (the shrinking cylinder is a barrier).
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Ancient pancakes

Figure: Snapshots of the rotationally symmetric ancient pancake.



Ancient pancakes

Our solution is the limit of a family of ‘old’ solutions evolving from
rotated timeslices of the Angenent oval.

The uniqueness follows a similar philosophy as the one-dimensional case;
but is complicated by the additional ‘rotational’ terms, which need to be
controlled. The key is to obtain uniqueness of the asymptotic translators
and a good estimate for |P(e2, t)|.

Remarks: ‘Existence’ is harder than for ovaloids, since ‘scaling is not
allowed’. Uniqueness is (hard, but) easier than for ovaloids since ‘scaling
is unnecessary’ and (surprisingly) no analysis of the ‘intermediate region’
is needed.
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