An Introduction to Ancient Ricci Flows and 3D Gradient Shrinkers

Timothy Buttsworth

Ricci Flow

Definition (Ricci Flow)

A one-parameter family of smooth Riemannian metrics $\left\{g_{t}\right\}_{t \in I}$ on a manifold M is said to be a Ricci flow if for all t in the interval I, we have

$$
\frac{\partial g_{t}}{\partial t}=-2 \operatorname{Ric}\left(g_{t}\right)
$$

where $\operatorname{Ric}\left(g_{t}\right)$ is the Ricci curvature of g_{t}.

Ricci Flow

\square
https://en.wikipedia.org/wiki/Ricci_flow

Ricci Flow in 1D

In mean curvature flow, the following curve unravels before collapsing to a single point. On the other hand, Ricci curvature is intrinsic, so the curve is unaffected by Ricci flow!

Klaus Ecker, Regularity Theory for Mean Curvature Flow

Ricci Flow in 2D

2D Ricci Flow is Conformal

In 2D, the Ricci flow preserves conformal class. Therefore, if our initial metric is $\left(M, g_{0}\right)$, then our solution is $g(t)=u(t, x) g_{0}$ for some function $u: I \times M \rightarrow \mathbb{R}$, and

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta_{g_{0}} \log (u)-S\left(g_{0}\right) \tag{1}
\end{equation*}
$$

where $\Delta_{g_{0}}$ is the Laplace-Beltrami operator, and $S\left(g_{0}\right)$ is the scalar curvature of g_{0}.

Ricci Flow in 2D

2D Ricci Flow is Conformal

In 2D, the Ricci flow preserves conformal class. Therefore, if our initial metric is $\left(M, g_{0}\right)$, then our solution is $g(t)=u(t, x) g_{0}$ for some function $u: I \times M \rightarrow \mathbb{R}$, and

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta_{g_{0}} \log (u)-S\left(g_{0}\right) \tag{1}
\end{equation*}
$$

where $\Delta_{g_{0}}$ is the Laplace-Beltrami operator, and $S\left(g_{0}\right)$ is the scalar curvature of g_{0}.

Peter Topping, Lectures on the Ricci Flow

Ancient Ricci Flow

Definition

An ancient Ricci flow is a Ricci flow $\left\{g_{t}\right\}_{t \in I}$ whose time interval I includes $-\infty$.

Ancient Ricci Flow

Definition

An ancient Ricci flow is a Ricci flow $\left\{g_{t}\right\}_{t \in I}$ whose time interval I includes $-\infty$.

Evolution of Scalar Curvature

If $\left\{g_{t}\right\}_{t \in I}$ is a Ricci flow and $S\left(g_{t}\right)$ is the scalar curvature of g_{t}, then

$$
\frac{\partial S}{\partial t}=\Delta_{g_{t}} S+2|\operatorname{Ric}|^{2}
$$

Ancient Ricci Flow

> Theorem (Chen 2009)
> If $\left\{g_{t}\right\}_{t \in I}$ is a complete ancient Ricci flow, then $S\left(g_{t}\right) \geq 0$ for each $t \in I$.

Ancient Ricci Flow

Theorem (Chen 2009)

If $\left\{g_{t}\right\}_{t \in I}$ is a complete ancient Ricci flow, then $S\left(g_{t}\right) \geq 0$ for each $t \in I$.

Theorem (Chen 2009)

If $\left\{g_{t}\right\}_{t \in I}$ is a complete ancient Ricci flow on a three-dimensional manifold, then it has non-negative sectional curvature.

Gradient Shrinking Ricci Solitons

Definition (Ricci Solitons)

A smooth and complete Riemannian manifold (M, g) is said to be a gradient shrinking Ricci soliton if there is a smooth function $f: M \rightarrow \mathbb{R}$ so that

$$
\operatorname{Ric}(g)+\operatorname{Hess}_{g}(f)=\frac{\lambda}{2} g
$$

for some constant $\lambda>0$. If $\lambda=0$, the Riemannian manifold is said to be a steady Ricci soliton.

Gradient Shrinking Ricci Solitons

Definition (Ricci Solitons)

A smooth and complete Riemannian manifold (M, g) is said to be a gradient shrinking Ricci soliton if there is a smooth function $f: M \rightarrow \mathbb{R}$ so that

$$
\operatorname{Ric}(g)+\operatorname{Hess}_{g}(f)=\frac{\lambda}{2} g
$$

for some constant $\lambda>0$. If $\lambda=0$, the Riemannian manifold is said to be a steady Ricci soliton.

Behaviour in Ricci flow

If g_{0} is a gradient shrinking or steady Ricci soliton, then $g(t)=\sigma(t) \phi(t)^{*} g_{0}$ is an ancient Ricci flow, with $\sigma(t)=1-\lambda t$, and $\phi(t)$ a diffeomorphism of M generated by $\nabla_{g_{0}} f$.
Shrinking Ricci solitons arise as singularity models for the Ricci flow, so understanding them becomes important in, for example, the Poincaré conjecture.

Gradient Shrinking Ricci Solitons

Gradient Steady Ricci Solitons

Cigar Soliton

The metric $g=\frac{d x^{2}+d y^{2}}{1+x^{2}+y^{2}}$ is a steady Ricci soliton on \mathbb{R}^{2}. The diffeomorphism of evolution is generated by $\nabla f=-2\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$.

Gradient Steady Ricci Solitons

Cigar Soliton

The metric $g=\frac{d x^{2}+d y^{2}}{1+x^{2}+y^{2}}$ is a steady Ricci soliton on \mathbb{R}^{2}. The diffeomorphism of evolution is generated by $\nabla f=-2\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$. In polar coordinates this is $g=d r^{2}+\tanh ^{2}(r) d \theta^{2}$.

Gradient Steady Ricci Solitons

Cigar Soliton

The metric $g=\frac{d x^{2}+d y^{2}}{1+x^{2}+y^{2}}$ is a steady Ricci soliton on \mathbb{R}^{2}. The diffeomorphism of evolution is generated by $\nabla f=-2\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$. In polar coordinates this is $g=d r^{2}+\tanh ^{2}(r) d \theta^{2}$.

Bryant Soliton

The analogue of the Cigar soliton on $\mathbb{R}^{n}(n \geq 3)$ is the Bryant soliton. It is also asymptotically cylindrical, but is more difficult to construct because the fibers \mathbb{S}^{n-1} now have intrinsic curvature.

Theorem (Hamilton 1982)

If (M, g) is a compact 3-dimensional Riemannian manifold with positive Ricci curvature, then the Ricci flow terminates in finite time. After renormalising, the metric converges to (a quotient of) the round sphere.

Theorem (Hamilton 1982)

If (M, g) is a compact 3-dimensional Riemannian manifold with positive Ricci curvature, then the Ricci flow terminates in finite time. After renormalising, the metric converges to (a quotient of) the round sphere.

This shows that the round sphere is the only 3-dimensional compact Ricci soliton.

Growth of the Potential Function

Theorem (Cao-Zhao 2010)

Suppose we have a shrinking GRS with $\lambda=1$. Then there are positive constants c_{1}, c_{2} and a point $x_{0} \in M$ so that for $d\left(x_{0}, x\right)$ large,

$$
\frac{1}{4}\left(d\left(x_{0}, x\right)-c_{1}\right)^{2} \leq f(x) \leq \frac{1}{4}\left(d\left(x_{0}, x\right)+c_{2}\right)^{2}
$$

Growth of the Potential Function

Theorem (Cao-Zhao 2010)

Suppose we have a shrinking GRS with $\lambda=1$. Then there are positive constants c_{1}, c_{2} and a point $x_{0} \in M$ so that for $d\left(x_{0}, x\right)$ large,

$$
\frac{1}{4}\left(d\left(x_{0}, x\right)-c_{1}\right)^{2} \leq f(x) \leq \frac{1}{4}\left(d\left(x_{0}, x\right)+c_{2}\right)^{2}
$$

Remark (The Gaussian Shrinker)

One example of a shrinker with $\lambda=1$ is $M=\mathbb{R}^{n}, g$ the standard Euclidean metric, and $f(x)=\frac{|x|^{2}}{4}$, so the coefficient of $\frac{1}{4}$ is optimal.

Growth of the Potential Function

Proof of upper bound

- If $S(g)$ is the scalar curvature of g, then $S+|\nabla f|^{2}-f=C_{0}$ is constant on M (if M is connected), so by adding a constant to f, we can assume that $C_{0}=0$.

Growth of the Potential Function

Proof of upper bound

- If $S(g)$ is the scalar curvature of g, then $S+|\nabla f|^{2}-f=C_{0}$ is constant on M (if M is connected), so by adding a constant to f, we can assume that $C_{0}=0$.
- Since $S(g) \geq 0$, we obtain that $|\nabla f|^{2} \leq f$.

Growth of the Potential Function

Proof of upper bound

- If $S(g)$ is the scalar curvature of g, then $S+|\nabla f|^{2}-f=C_{0}$ is constant on M (if M is connected), so by adding a constant to f, we can assume that $C_{0}=0$.
- Since $S(g) \geq 0$, we obtain that $|\nabla f|^{2} \leq f$.
- Integrating gives $f(x) \leq \frac{1}{4}\left(d\left(x_{0}, x\right)+2 \sqrt{f\left(x_{0}\right)}\right)^{2}$.

Growth of the Potential Function

Proof of lower bound (part 1)

- Consider any minimising arc-length geodesic $\gamma:\left[0, s_{0}\right] \rightarrow M$ with $\gamma(0)=x_{0}, \gamma\left(s_{0}\right)=y$ and $s_{0}>2$.

Growth of the Potential Function

Proof of lower bound (part 1)

- Consider any minimising arc-length geodesic $\gamma:\left[0, s_{0}\right] \rightarrow M$ with $\gamma(0)=x_{0}, \gamma\left(s_{0}\right)=y$ and $s_{0}>2$.
- Let $\phi(s) \in\left\{s, 1, s_{0}-s\right\}$ for $s \in[0,1],\left[1, s_{0}-1\right],\left[s_{0}-1, s_{0}\right]$.

Growth of the Potential Function

Proof of lower bound (part 1)

- Consider any minimising arc-length geodesic $\gamma:\left[0, s_{0}\right] \rightarrow M$ with $\gamma(0)=x_{0}, \gamma\left(s_{0}\right)=y$ and $s_{0}>2$.
- Let $\phi(s) \in\left\{s, 1, s_{0}-s\right\}$ for $s \in[0,1],\left[1, s_{0}-1\right],\left[s_{0}-1, s_{0}\right]$.
- Then by the variation formula for energy,

$$
\int_{0}^{s_{0}} \phi^{2} \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right) \leq(n-1) \int_{0}^{s_{0}}\left(\phi^{\prime}\right)^{2}=2 n-2
$$

Growth of the Potential Function

Proof of lower bound (part 1)

- Consider any minimising arc-length geodesic $\gamma:\left[0, s_{0}\right] \rightarrow M$ with $\gamma(0)=x_{0}, \gamma\left(s_{0}\right)=y$ and $s_{0}>2$.
- Let $\phi(s) \in\left\{s, 1, s_{0}-s\right\}$ for $s \in[0,1],\left[1, s_{0}-1\right],\left[s_{0}-1, s_{0}\right]$.
- Then by the variation formula for energy,

$$
\int_{0}^{s_{0}} \phi^{2} \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right) \leq(n-1) \int_{0}^{s_{0}}\left(\phi^{\prime}\right)^{2}=2 n-2
$$

- Then since $\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)=\frac{1}{2}-\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} f$, we find

$$
\begin{aligned}
\frac{d\left(x_{0}, y\right)}{2}+\frac{4}{3}-2 n & \leq \int_{0}^{s_{0}} \phi^{2} \nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} f \\
& \leq 1+\sqrt{f\left(x_{0}\right)}+\sqrt{f(y)}
\end{aligned}
$$

Growth of the Potential Function

Proof of lower bound (part 1)

- Consider any minimising arc-length geodesic $\gamma:\left[0, s_{0}\right] \rightarrow M$ with $\gamma(0)=x_{0}, \gamma\left(s_{0}\right)=y$ and $s_{0}>2$.
- Let $\phi(s) \in\left\{s, 1, s_{0}-s\right\}$ for $s \in[0,1],\left[1, s_{0}-1\right],\left[s_{0}-1, s_{0}\right]$.
- Then by the variation formula for energy,

$$
\int_{0}^{s_{0}} \phi^{2} \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right) \leq(n-1) \int_{0}^{s_{0}}\left(\phi^{\prime}\right)^{2}=2 n-2
$$

- Then since $\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)=\frac{1}{2}-\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}}$, we find

$$
\begin{aligned}
\frac{d\left(x_{0}, y\right)}{2}+\frac{4}{3}-2 n & \leq \int_{0}^{s_{0}} \phi^{2} \nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} f \\
& \leq 1+\sqrt{f\left(x_{0}\right)}+\sqrt{f(y)}
\end{aligned}
$$

- We can therefore choose x_{0} to be the minimiser of f.

Growth of the Potential Function

Proof of lower bound (part 2)

- If x_{0} is a minimiser of f, then $\Delta_{g} f\left(x_{0}\right) \geq 0$.

Growth of the Potential Function

Proof of lower bound (part 2)

- If x_{0} is a minimiser of f, then $\Delta_{g} f\left(x_{0}\right) \geq 0$.
- Then since $S+\Delta_{g} f=\frac{n}{2}$, we find $0 \leq S\left(x_{0}\right) \leq \frac{n}{2}$, so $0 \leq f\left(x_{0}\right) \leq \frac{n}{2}$ since $\nabla f\left(x_{0}\right)=0$.

Growth of the Potential Function

Proof of lower bound (part 2)

- If x_{0} is a minimiser of f, then $\Delta_{g} f\left(x_{0}\right) \geq 0$.
- Then since $S+\Delta_{g} f=\frac{n}{2}$, we find $0 \leq S\left(x_{0}\right) \leq \frac{n}{2}$, so $0 \leq f\left(x_{0}\right) \leq \frac{n}{2}$ since $\nabla f\left(x_{0}\right)=0$.
- The lower bound then follows from our previous estimate

$$
\frac{d\left(x_{0}, y\right)}{2}+\frac{4}{3}-2 n \leq 1+\sqrt{f\left(x_{0}\right)}+\sqrt{f(y)}
$$

Volume Growth

Lemma (Cao-Zhao 2010)
If $D(r)$ is the set of x with $f(x) \leq \frac{r^{2}}{4}$, then $\int_{D(r)} S \leq \frac{n}{2} \operatorname{Vol}(D(r))$.

Volume Growth

Lemma (Cao-Zhao 2010)
If $D(r)$ is the set of x with $f(x) \leq \frac{r^{2}}{4}$, then $\int_{D(r)} S \leq \frac{n}{2} \operatorname{Vol}(D(r))$.
Proof.

- Let $V(r)=\int_{D(r)} 1$.

Volume Growth

Lemma (Cao-Zhao 2010)

If $D(r)$ is the set of x with $f(x) \leq \frac{r^{2}}{4}$, then $\int_{D(r)} S \leq \frac{n}{2} \operatorname{Vol}(D(r))$.

Proof.

- Let $V(r)=\int_{D(r)} 1$.
- Then $n V(r)-2 \int_{D(r)} S=2 \int_{D(r)} \Delta f=2 \int_{\partial D(r)} \nabla f \cdot \frac{\nabla f}{|\nabla f|} \geq 0$.

The Noncompact, Positive Curvature Case

Theorem (Munteanu- Wang 2015)

A gradient shrinking Ricci soliton with non-negative sectional curvature and positive Ricci curvature is compact.

The Noncompact, Positive Curvature Case

Theorem (Munteanu- Wang 2015)

A gradient shrinking Ricci soliton with non-negative sectional curvature and positive Ricci curvature is compact.

Remark

We can assume without loss of generality that $\lambda=1$. We may also add a constant to f so that $S+|\nabla f|^{2}=f$ everywhere.

The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)
Let $\lambda: M \rightarrow \mathbb{R}^{+}$be the function which returns the smallest Ricci eigenvalue. Then there exists a $0<b<1$ so that, for $d\left(x, x_{0}\right)$ large, $\lambda(x) \geq \frac{b}{f}$.

The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)

Let $\lambda: M \rightarrow \mathbb{R}^{+}$be the function which returns the smallest Ricci eigenvalue. Then there exists a $0<b<1$ so that, for $d\left(x, x_{0}\right)$ large, $\lambda(x) \geq \frac{b}{f}$.

Proof.

- GRS equation for Ricci curvature is $\Delta_{f} R_{i j}=R_{i j}-2 R_{i k j l} R_{k l}$, where $\Delta_{f} \cdot=\Delta \cdot-g(\nabla f, \nabla \cdot)$.

The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)

Let $\lambda: M \rightarrow \mathbb{R}^{+}$be the function which returns the smallest Ricci eigenvalue. Then there exists a $0<b<1$ so that, for $d\left(x, x_{0}\right)$ large, $\lambda(x) \geq \frac{b}{f}$.

Proof.

- GRS equation for Ricci curvature is $\Delta_{f} R_{i j}=R_{i j}-2 R_{i k j l} R_{k l}$, where $\Delta_{f} \cdot=\Delta \cdot-g(\nabla f, \nabla \cdot)$.
- We have non-negative sectional curvature, so $\Delta_{f} \lambda \leq \lambda$ (in the barrier sense).

The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)

Let $\lambda: M \rightarrow \mathbb{R}^{+}$be the function which returns the smallest Ricci eigenvalue. Then there exists a $0<b<1$ so that, for $d\left(x, x_{0}\right)$ large, $\lambda(x) \geq \frac{b}{f}$.

Proof.

- GRS equation for Ricci curvature is $\Delta_{f} R_{i j}=R_{i j}-2 R_{i k j l} R_{k l}$, where $\Delta_{f} \cdot=\Delta \cdot-g(\nabla f, \nabla \cdot)$.
- We have non-negative sectional curvature, so $\Delta_{f} \lambda \leq \lambda$ (in the barrier sense).
- For $r(x)>r_{0}$, we have $\Delta_{f} u \leq u$, where $u=\lambda-\frac{a}{f}-\frac{a n}{f^{2}}$, $a=\inf _{\partial B_{r_{0}}(p)} \lambda>0$.

The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)

Let $\lambda: M \rightarrow \mathbb{R}^{+}$be the function which returns the smallest Ricci eigenvalue. Then there exists a $0<b<1$ so that, for $d\left(x, x_{0}\right)$ large, $\lambda(x) \geq \frac{b}{f}$.

Proof.

- GRS equation for Ricci curvature is $\Delta_{f} R_{i j}=R_{i j}-2 R_{i k j l} R_{k l}$, where $\Delta_{f} \cdot=\Delta \cdot-g(\nabla f, \nabla \cdot)$.
- We have non-negative sectional curvature, so $\Delta_{f} \lambda \leq \lambda$ (in the barrier sense).
- For $r(x)>r_{0}$, we have $\Delta_{f} u \leq u$, where $u=\lambda-\frac{a}{f}-\frac{a n}{f^{2}}$, $a=\inf _{\partial B_{r_{0}}(p)} \lambda>0$.
- Provided r_{0} is made larger if necessary, we have $u>0$ on $\partial B_{r_{0}}(p)$, and u is asymptotically non-negative as $r \rightarrow \infty$. The maximum principle then implies that $u \geq 0$ for $r(x)>r_{0}$.

The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)
The scalar curvature S satisfies $S \geq b \ln (f)$.

The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)
The scalar curvature S satisfies $S \geq b \ln (f)$.

Proof.

- For Ricci solitons, we have $\nabla S=2 \operatorname{Ric}(\nabla f)$.

The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)

The scalar curvature S satisfies $S \geq b \ln (f)$.

Proof.

- For Ricci solitons, we have $\nabla S=2 \operatorname{Ric}(\nabla f)$.
- If $\nabla f \neq 0$ then we can integrate in this direction. Using Ric $\geq \frac{b}{f}$ gives the result.

The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)

The scalar curvature S satisfies $S \geq b \ln (f)$.

Proof.

- For Ricci solitons, we have $\nabla S=2 \operatorname{Ric}(\nabla f)$.
- If $\nabla f \neq 0$ then we can integrate in this direction. Using Ric $\geq \frac{b}{f}$ gives the result.
- Since $|\nabla f|^{2}=f-S$, the only points with $\nabla f=0$ are either close to p, or have $S \geq b \ln (f)$ anyway.

The Noncompact, Positive Curvature Case

Proof of Theorem

- Recall that $S(x) \geq b \ln (f(x)), f(x) \sim \frac{d\left(x, x_{0}\right)^{2}}{4}$ for large $d\left(x, x_{0}\right)$. Therefore, if we are non-compact, then for any q with $d\left(x_{0}, q\right)=\frac{3 r}{4}(r>0$ large $)$, we have

$$
\int_{B_{x_{0}}(r)} S \geq \int_{B_{q}\left(\frac{r}{4}\right)} S \geq b \ln \left(\frac{r}{4}-c\right)^{2} \operatorname{Vol}\left(B_{q}\left(\frac{r}{4}\right)\right)
$$

The Noncompact, Positive Curvature Case

Proof of Theorem

- Recall that $S(x) \geq b \ln (f(x)), f(x) \sim \frac{d\left(x, x_{0}\right)^{2}}{4}$ for large $d\left(x, x_{0}\right)$. Therefore, if we are non-compact, then for any q with $d\left(x_{0}, q\right)=\frac{3 r}{4}(r>0$ large $)$, we have

$$
\int_{B_{x_{0}}(r)} S \geq \int_{B_{q}\left(\frac{r}{4}\right)} S \geq b \ln \left(\frac{r}{4}-c\right)^{2} \operatorname{Vol}\left(B_{q}\left(\frac{r}{4}\right)\right)
$$

- Also recall that the average value for S on

$$
D(r)=\left\{x: f(x) \leq \frac{r^{2}}{4}\right\} \text { is bounded by } \frac{n}{2} \text {, so }
$$

$$
\int_{B_{x_{0}}(r)} S \sim \int_{D(r)} S \leq \frac{n}{2} \operatorname{Vol}(D(r)) \sim \operatorname{Vol}\left(B_{x_{0}}(r)\right)
$$

The Noncompact, Positive Curvature Case

Proof of Theorem

- Recall that $S(x) \geq b \ln (f(x)), f(x) \sim \frac{d\left(x, x_{0}\right)^{2}}{4}$ for large $d\left(x, x_{0}\right)$. Therefore, if we are non-compact, then for any q with $d\left(x_{0}, q\right)=\frac{3 r}{4}(r>0$ large $)$, we have

$$
\int_{B_{x_{0}}(r)} S \geq \int_{B_{q}\left(\frac{r}{4}\right)} S \geq b \ln \left(\frac{r}{4}-c\right)^{2} \operatorname{Vol}\left(B_{q}\left(\frac{r}{4}\right)\right) .
$$

- Also recall that the average value for S on

$$
\begin{aligned}
& D(r)=\left\{x: f(x) \leq \frac{r^{2}}{4}\right\} \text { is bounded by } \frac{n}{2} \text {, so } \\
& \\
& \quad \int_{B_{x_{0}}(r)} S \sim \int_{D(r)} S \leq \frac{n}{2} \operatorname{Vol}(D(r)) \sim \operatorname{Vol}\left(B_{x_{0}}(r)\right) .
\end{aligned}
$$

- However, we also have $\operatorname{Vol}\left(B_{q}\left(\frac{r}{4}\right)\right) \geq c(n) \operatorname{Vol}\left(B_{x_{0}}(r)\right)$ by Bishop-Gromov volume comparison, which is a contradiction.

The Case of Non-Negative Curvature

Hamilton-Ivey Pinching

- At each point $p \in M$, the Riemann Curvature Tensor can be thought of as a linear operator $\mathcal{R}: \bigwedge^{2} T_{p} M \rightarrow \bigwedge T_{p} M$

The Case of Non-Negative Curvature

Hamilton-Ivey Pinching

- At each point $p \in M$, the Riemann Curvature Tensor can be thought of as a linear operator $\mathcal{R}: \bigwedge^{2} T_{p} M \rightarrow \bigwedge T_{p} M$
- After some gauge transformations (Uhlenbeck trick) we find that under the Ricci flow,

$$
\begin{equation*}
\frac{\partial \mathcal{R}}{\partial t}=\Delta_{g_{t}} \mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{\#} \tag{2}
\end{equation*}
$$

The Case of Non-Negative Curvature

Hamilton-Ivey Pinching

- At each point $p \in M$, the Riemann Curvature Tensor can be thought of as a linear operator $\mathcal{R}: \bigwedge^{2} T_{p} M \rightarrow \bigwedge T_{p} M$
- After some gauge transformations (Uhlenbeck trick) we find that under the Ricci flow,

$$
\begin{equation*}
\frac{\partial \mathcal{R}}{\partial t}=\Delta_{g_{t}} \mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{\#} \tag{2}
\end{equation*}
$$

- In three-dimensions, $\mathcal{R}^{2}+\mathcal{R}^{\#}$ is positive semi-definite whenever g_{t} has non-negative sectional curvature.

The Case of Non-Negative Curvature

Hamilton-Ivey Pinching

- At each point $p \in M$, the Riemann Curvature Tensor can be thought of as a linear operator $\mathcal{R}: \bigwedge^{2} T_{p} M \rightarrow \bigwedge T_{p} M$
- After some gauge transformations (Uhlenbeck trick) we find that under the Ricci flow,

$$
\begin{equation*}
\frac{\partial \mathcal{R}}{\partial t}=\Delta_{g_{t}} \mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{\#} \tag{2}
\end{equation*}
$$

- In three-dimensions, $\mathcal{R}^{2}+\mathcal{R}^{\#}$ is positive semi-definite whenever g_{t} has non-negative sectional curvature.
- In fact, one can show from this equation that, under the Ricci flow, positive sectional curvatures dominate negative sectional curvatures.

The Case of Non-Negative Curvature

Theorem (Hamilton's Splitting Theorem)

A simply-connected, non-negatively curved 3-dimensional GRS M with a Ricci eigenvector of 0 somewhere must be of the form $\mathbb{R} \times N$ for some 2-dimensional GRS N.

The Case of Non-Negative Curvature

Theorem (Hamilton's Splitting Theorem)

A simply-connected, non-negatively curved 3-dimensional GRS M with a Ricci eigenvector of 0 somewhere must be of the form $\mathbb{R} \times N$ for some 2-dimensional GRS N.

Sketch of Proof

- Suppose $\left(x_{0}, v\right) \in T M$ is a point with $\operatorname{Ric}(v, v)=0$. Extend v to a vector field on M by parallel transporting it along radial geodesics from x_{0}.

The Case of Non-Negative Curvature

Theorem (Hamilton's Splitting Theorem)

A simply-connected, non-negatively curved 3-dimensional GRS M with a Ricci eigenvector of 0 somewhere must be of the form $\mathbb{R} \times N$ for some 2-dimensional GRS N.

Sketch of Proof

- Suppose $\left(x_{0}, v\right) \in T M$ is a point with $\operatorname{Ric}(v, v)=0$. Extend v to a vector field on M by parallel transporting it along radial geodesics from x_{0}.
- The resulting function $\operatorname{Ric}(v, v)$ is non-negative, and has a minimum of zero at x_{0}; the maximum principle implies that this function is uniformly zero.

The Case of Non-Negative Curvature

Theorem (Hamilton's Splitting Theorem)

A simply-connected, non-negatively curved 3-dimensional GRS M with a Ricci eigenvector of 0 somewhere must be of the form $\mathbb{R} \times N$ for some 2-dimensional GRS N.

Sketch of Proof

- Suppose $\left(x_{0}, v\right) \in T M$ is a point with $\operatorname{Ric}(v, v)=0$. Extend v to a vector field on M by parallel transporting it along radial geodesics from x_{0}.
- The resulting function $\operatorname{Ric}(v, v)$ is non-negative, and has a minimum of zero at x_{0}; the maximum principle implies that this function is uniformly zero.
- For each $x \in M$, split $T_{x} M$ into $v \oplus v^{\perp}$, and this decomposition is invariant under the holonomy group. Apply the de Rham decomposition Theorem.

2D Shrinkers

- If scalar curvature is zero somewhere, it must be 0 everywhere by the maximum principle. Then the manifold is Ricci flat, hence Riemann flat.

2D Shrinkers

- If scalar curvature is zero somewhere, it must be 0 everywhere by the maximum principle. Then the manifold is Ricci flat, hence Riemann flat.
- If scalar curvature is positive everywhere, then the same is true for the Ricci curvature and Riemann curvature, so Munteanu-Wang implies that the manifold is compact.

2D Shrinkers

- If scalar curvature is zero somewhere, it must be 0 everywhere by the maximum principle. Then the manifold is Ricci flat, hence Riemann flat.
- If scalar curvature is positive everywhere, then the same is true for the Ricci curvature and Riemann curvature, so Munteanu-Wang implies that the manifold is compact.
- If we are compact and have positive curvature, Hamilton's rounding Theorem implies that we are \mathbb{S}^{2} or $\mathbb{R P}^{2}$.

3D Gradient Shrinking Ricci Solitons

To summarise, the simply-connected three-dimension gradient shrinkers are:

- The round three-sphere \mathbb{S}^{3},

3D Gradient Shrinking Ricci Solitons

To summarise, the simply-connected three-dimension gradient shrinkers are:

- The round three-sphere \mathbb{S}^{3},
- The shrinking cylinder, $\mathbb{R} \times \mathbb{S}^{2}$,

3D Gradient Shrinking Ricci Solitons

To summarise, the simply-connected three-dimension gradient shrinkers are:

- The round three-sphere \mathbb{S}^{3},
- The shrinking cylinder, $\mathbb{R} \times \mathbb{S}^{2}$,
- Flat Euclidean Space \mathbb{R}^{3} (Gaussian shrinkiner).

3D Gradient Shrinking Ricci Solitons

To summarise, the simply-connected three-dimension gradient shrinkers are:

- The round three-sphere \mathbb{S}^{3},
- The shrinking cylinder, $\mathbb{R} \times \mathbb{S}^{2}$,
- Flat Euclidean Space \mathbb{R}^{3} (Gaussian shrinkiner).

3D Gradient Shrinking Ricci Solitons

To summarise, the simply-connected three-dimension gradient shrinkers are:

- The round three-sphere \mathbb{S}^{3},
- The shrinking cylinder, $\mathbb{R} \times \mathbb{S}^{2}$,
- Flat Euclidean Space \mathbb{R}^{3} (Gaussian shrinkiner).

Removing the simply-connected assumption also gives us quotients of the above:

- \mathbb{S}^{2} above can be replaced with $\mathbb{R} \mathbb{P}^{2}$,

3D Gradient Shrinking Ricci Solitons

To summarise, the simply-connected three-dimension gradient shrinkers are:

- The round three-sphere \mathbb{S}^{3},
- The shrinking cylinder, $\mathbb{R} \times \mathbb{S}^{2}$,
- Flat Euclidean Space \mathbb{R}^{3} (Gaussian shrinkiner).

Removing the simply-connected assumption also gives us quotients of the above:

- \mathbb{S}^{2} above can be replaced with $\mathbb{R} \mathbb{P}^{2}$,
- \mathbb{S}^{3} can be replaced with \mathbb{S}^{3} / Γ where Γ is finite and acts freely on \mathbb{S}^{3},

3D Gradient Shrinking Ricci Solitons

To summarise, the simply-connected three-dimension gradient shrinkers are:

- The round three-sphere \mathbb{S}^{3},
- The shrinking cylinder, $\mathbb{R} \times \mathbb{S}^{2}$,
- Flat Euclidean Space \mathbb{R}^{3} (Gaussian shrinkiner).

Removing the simply-connected assumption also gives us quotients of the above:

- \mathbb{S}^{2} above can be replaced with $\mathbb{R} \mathbb{P}^{2}$,
- \mathbb{S}^{3} can be replaced with \mathbb{S}^{3} / Γ where Γ is finite and acts freely on \mathbb{S}^{3},
- The shrinking cylinder can be quotiented by an involution,

3D Gradient Shrinking Ricci Solitons

To summarise, the simply-connected three-dimension gradient shrinkers are:

- The round three-sphere \mathbb{S}^{3},
- The shrinking cylinder, $\mathbb{R} \times \mathbb{S}^{2}$,
- Flat Euclidean Space \mathbb{R}^{3} (Gaussian shrinkiner).

Removing the simply-connected assumption also gives us quotients of the above:

- \mathbb{S}^{2} above can be replaced with $\mathbb{R} \mathbb{P}^{2}$,
- \mathbb{S}^{3} can be replaced with \mathbb{S}^{3} / Γ where Γ is finite and acts freely on \mathbb{S}^{3},
- The shrinking cylinder can be quotiented by an involution,
- We cannot replace \mathbb{R}^{3} with quotients because it will not be a gradient shrinking soliton anymore.

Summary

- We have classified 3D gradient shrinking Ricci solitons (without the κ non-collapsedness assumption).

Summary

- We have classified 3D gradient shrinking Ricci solitons (without the κ non-collapsedness assumption).
- The presented proof is essentially without holes, except for:

Summary

- We have classified 3D gradient shrinking Ricci solitons (without the κ non-collapsedness assumption).
- The presented proof is essentially without holes, except for:
- Hamilton's rounding Theorem (Ricci flow turns positively curved 2 and 3 -manifolds to spheres) and

Summary

- We have classified 3D gradient shrinking Ricci solitons (without the κ non-collapsedness assumption).
- The presented proof is essentially without holes, except for:
- Hamilton's rounding Theorem (Ricci flow turns positively curved 2 and 3-manifolds to spheres) and
- Chen's local pinching estimates (ancient Ricci flows have non-negative scalar curvature, and ancient 3D Ricci flows have non-negative sectional curvature).

