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Ricci Flow

Definition (Ricci Flow)

A one-parameter family of smooth Riemannian metrics {gt}t∈I on
a manifold M is said to be a Ricci flow if for all t in the interval I ,
we have

∂gt
∂t

= −2Ric(gt),

where Ric(gt) is the Ricci curvature of gt .



Ricci Flow

https://en.wikipedia.org/wiki/Ricci flow



Ricci Flow in 1D

In mean curvature flow, the following curve unravels before
collapsing to a single point. On the other hand, Ricci curvature is
intrinsic, so the curve is unaffected by Ricci flow!

Klaus Ecker, Regularity Theory for Mean Curvature Flow



Ricci Flow in 2D

2D Ricci Flow is Conformal

In 2D, the Ricci flow preserves conformal class. Therefore, if our
initial metric is (M, g0), then our solution is g(t) = u(t, x)g0 for
some function u : I ×M → R, and

∂u

∂t
= ∆g0 log(u)− S(g0), (1)

where ∆g0 is the Laplace-Beltrami operator, and S(g0) is the
scalar curvature of g0.

Peter Topping, Lectures on the Ricci Flow
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Ancient Ricci Flow

Definition

An ancient Ricci flow is a Ricci flow {gt}t∈I whose time interval I
includes −∞.

Evolution of Scalar Curvature

If {gt}t∈I is a Ricci flow and S(gt) is the scalar curvature of gt ,
then

∂S

∂t
= ∆gtS + 2 |Ric|2 .
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Ancient Ricci Flow

Theorem (Chen 2009)

If {gt}t∈I is a complete ancient Ricci flow, then S(gt) ≥ 0 for each
t ∈ I .

Theorem (Chen 2009)

If {gt}t∈I is a complete ancient Ricci flow on a three-dimensional
manifold, then it has non-negative sectional curvature.
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Gradient Shrinking Ricci Solitons

Definition (Ricci Solitons)

A smooth and complete Riemannian manifold (M, g) is said to be
a gradient shrinking Ricci soliton if there is a smooth function
f : M → R so that

Ric(g) + Hessg (f ) =
λ

2
g

for some constant λ > 0. If λ = 0, the Riemannian manifold is
said to be a steady Ricci soliton.

Behaviour in Ricci flow

If g0 is a gradient shrinking or steady Ricci soliton, then
g(t) = σ(t)φ(t)∗g0 is an ancient Ricci flow, with σ(t) = 1− λt,
and φ(t) a diffeomorphism of M generated by ∇g0f .
Shrinking Ricci solitons arise as singularity models for the Ricci
flow, so understanding them becomes important in, for example,
the Poincaré conjecture.
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Gradient Shrinking Ricci Solitons



Gradient Steady Ricci Solitons

Cigar Soliton

The metric g = dx2+dy2

1+x2+y2 is a steady Ricci soliton on R2. The

diffeomorphism of evolution is generated by ∇f = −2(x ∂
∂x + y ∂

∂y ).

In polar coordinates this is g = dr2 + tanh2(r)dθ2.

Bryant Soliton

The analogue of the Cigar soliton on Rn (n ≥ 3) is the Bryant
soliton. It is also asymptotically cylindrical, but is more difficult to
construct because the fibers Sn−1 now have intrinsic curvature.
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3D Solitons: The Compact, Positive Curvature Case

Theorem (Hamilton 1982)

If (M, g) is a compact 3-dimensional Riemannian manifold with
positive Ricci curvature, then the Ricci flow terminates in finite
time. After renormalising, the metric converges to (a quotient of)
the round sphere.

This shows that the round sphere is the only 3-dimensional
compact Ricci soliton.
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Growth of the Potential Function

Theorem (Cao-Zhao 2010)

Suppose we have a shrinking GRS with λ = 1. Then there are
positive constants c1, c2 and a point x0 ∈ M so that for d(x0, x)
large,

1

4
(d(x0, x)− c1)2 ≤ f (x) ≤ 1

4
(d(x0, x) + c2)2

Remark (The Gaussian Shrinker)

One example of a shrinker with λ = 1 is M = Rn, g the standard

Euclidean metric, and f (x) = |x |2
4 , so the coefficient of 1

4 is
optimal.
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Growth of the Potential Function

Proof of upper bound

If S(g) is the scalar curvature of g , then S + |∇f |2 − f = C0

is constant on M (if M is connected), so by adding a constant
to f , we can assume that C0 = 0.

Since S(g) ≥ 0, we obtain that |∇f |2 ≤ f .

Integrating gives f (x) ≤ 1
4

(
d(x0, x) + 2

√
f (x0)

)2
.



Growth of the Potential Function

Proof of upper bound

If S(g) is the scalar curvature of g , then S + |∇f |2 − f = C0

is constant on M (if M is connected), so by adding a constant
to f , we can assume that C0 = 0.

Since S(g) ≥ 0, we obtain that |∇f |2 ≤ f .

Integrating gives f (x) ≤ 1
4

(
d(x0, x) + 2

√
f (x0)

)2
.



Growth of the Potential Function

Proof of upper bound

If S(g) is the scalar curvature of g , then S + |∇f |2 − f = C0

is constant on M (if M is connected), so by adding a constant
to f , we can assume that C0 = 0.

Since S(g) ≥ 0, we obtain that |∇f |2 ≤ f .

Integrating gives f (x) ≤ 1
4

(
d(x0, x) + 2

√
f (x0)

)2
.



Growth of the Potential Function

Proof of lower bound (part 1)

Consider any minimising arc-length geodesic γ : [0, s0]→ M
with γ(0) = x0, γ(s0) = y and s0 > 2.

Let φ(s) ∈ {s, 1, s0 − s} for s ∈ [0, 1], [1, s0 − 1], [s0 − 1, s0].

Then by the variation formula for energy,∫ s0

0
φ2Ric(γ′, γ′) ≤ (n − 1)

∫ s0

0
(φ′)2 = 2n − 2.

Then since Ric(γ′, γ′) = 1
2 −∇γ′∇γ′f , we find

d(x0, y)

2
+

4

3
− 2n ≤

∫ s0

0
φ2∇γ′∇γ′f

≤ 1 +
√

f (x0) +
√
f (y).

We can therefore choose x0 to be the minimiser of f .
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Growth of the Potential Function

Proof of lower bound (part 2)

If x0 is a minimiser of f , then ∆g f (x0) ≥ 0.

Then since S + ∆g f = n
2 , we find 0 ≤ S(x0) ≤ n

2 , so
0 ≤ f (x0) ≤ n

2 since ∇f (x0) = 0.

The lower bound then follows from our previous estimate
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Volume Growth

Lemma (Cao-Zhao 2010)

If D(r) is the set of x with f (x) ≤ r2

4 , then
∫
D(r) S ≤

n
2Vol(D(r)).

Proof.

Let V (r) =
∫
D(r) 1.

Then nV (r)− 2
∫
D(r) S = 2

∫
D(r) ∆f = 2

∫
∂D(r)∇f ·

∇f
|∇f | ≥ 0.
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The Noncompact, Positive Curvature Case

Theorem (Munteanu- Wang 2015)

A gradient shrinking Ricci soliton with non-negative sectional
curvature and positive Ricci curvature is compact.

Remark

We can assume without loss of generality that λ = 1. We may also
add a constant to f so that S + |∇f |2 = f everywhere.
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The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)

Let λ : M → R+ be the function which returns the smallest Ricci
eigenvalue. Then there exists a 0 < b < 1 so that, for d(x , x0)
large, λ(x) ≥ b

f .

Proof.

GRS equation for Ricci curvature is ∆f Rij = Rij − 2RikjlRkl ,
where ∆f · = ∆ · −g(∇f ,∇·).

We have non-negative sectional curvature, so ∆f λ ≤ λ (in the
barrier sense).

For r(x) > r0, we have ∆f u ≤ u, where u = λ− a
f −

an
f 2

,
a = inf∂Br0 (p)

λ > 0.

Provided r0 is made larger if necessary, we have u > 0 on
∂Br0(p), and u is asymptotically non-negative as r →∞. The
maximum principle then implies that u ≥ 0 for r(x) > r0.
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The Noncompact, Positive Curvature Case

Lemma (A lower bound on Ricci curvature)

The scalar curvature S satisfies S ≥ b ln(f ).

Proof.

For Ricci solitons, we have ∇S = 2Ric(∇f ).

If ∇f 6= 0 then we can integrate in this direction. Using
Ric ≥ b

f gives the result.

Since |∇f |2 = f − S , the only points with ∇f = 0 are either
close to p, or have S ≥ b ln(f ) anyway.
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The Noncompact, Positive Curvature Case

Proof of Theorem

Recall that S(x) ≥ b ln(f (x)), f (x) ∼ d(x ,x0)2

4 for large
d(x , x0). Therefore, if we are non-compact, then for any q
with d(x0, q) = 3r

4 (r > 0 large), we have∫
Bx0 (r)

S ≥
∫
Bq(

r
4
)
S ≥ b ln

( r
4
− c
)2

Vol(Bq(
r

4
)).

Also recall that the average value for S on
D(r) = {x : f (x) ≤ r2

4 } is bounded by n
2 , so∫

Bx0 (r)
S ∼

∫
D(r)

S ≤ n

2
Vol(D(r)) ∼ Vol(Bx0(r)).

However, we also have Vol(Bq( r
4)) ≥ c(n)Vol(Bx0(r)) by

Bishop-Gromov volume comparison, which is a contradiction.
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The Case of Non-Negative Curvature

Hamilton-Ivey Pinching

At each point p ∈ M, the Riemann Curvature Tensor can be
thought of as a linear operator R :

∧2 TpM →
∧
TpM

After some gauge transformations (Uhlenbeck trick) we find
that under the Ricci flow,

∂R
∂t

= ∆gtR+R2 +R#. (2)

In three-dimensions, R2 +R# is positive semi-definite
whenever gt has non-negative sectional curvature.

In fact, one can show from this equation that, under the Ricci
flow, positive sectional curvatures dominate negative sectional
curvatures.
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The Case of Non-Negative Curvature

Theorem (Hamilton’s Splitting Theorem)

A simply-connected, non-negatively curved 3-dimensional GRS M
with a Ricci eigenvector of 0 somewhere must be of the form
R× N for some 2-dimensional GRS N.

Sketch of Proof

Suppose (x0, v) ∈ TM is a point with Ric(v , v) = 0. Extend v
to a vector field on M by parallel transporting it along radial
geodesics from x0.

The resulting function Ric(v , v) is non-negative, and has a
minimum of zero at x0; the maximum principle implies that
this function is uniformly zero.

For each x ∈ M, split TxM into v ⊕ v⊥, and this
decomposition is invariant under the holonomy group. Apply
the de Rham decomposition Theorem.
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2D Shrinkers

If scalar curvature is zero somewhere, it must be 0 everywhere
by the maximum principle. Then the manifold is Ricci flat,
hence Riemann flat.

If scalar curvature is positive everywhere, then the same is
true for the Ricci curvature and Riemann curvature, so
Munteanu-Wang implies that the manifold is compact.

If we are compact and have positive curvature, Hamilton’s
rounding Theorem implies that we are S2 or RP2.
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3D Gradient Shrinking Ricci Solitons

To summarise, the simply-connected three-dimension gradient
shrinkers are:

The round three-sphere S3,

The shrinking cylinder, R× S2,

Flat Euclidean Space R3 (Gaussian shrinkiner).

Removing the simply-connected assumption also gives us quotients
of the above:

S2 above can be replaced with RP2,

S3 can be replaced with S3/Γ where Γ is finite and acts freely
on S3,

The shrinking cylinder can be quotiented by an involution,

We cannot replace R3 with quotients because it will not be a
gradient shrinking soliton anymore.
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Summary

We have classified 3D gradient shrinking Ricci solitons
(without the κ non-collapsedness assumption).

The presented proof is essentially without holes, except for:

Hamilton’s rounding Theorem (Ricci flow turns positively
curved 2 and 3-manifolds to spheres) and
Chen’s local pinching estimates (ancient Ricci flows have
non-negative scalar curvature, and ancient 3D Ricci flows have
non-negative sectional curvature).
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