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1 Upper Bound
We continue proving the lemma from last week.

Lemma 1.1. Let K be any finite dimensional subspace of H(M) of {u ∈
C∞(M) : ∆u = 0}. Let {ui}ki=1 be any orthonormal basis of K with respect
to L2(Br(x)).

Then for any 0 < ε < 1/2,

ˆ
B(1−ε)r(x)

k∑
i=1

u2
i ≤ C(n)ε−(n−1).

Proof. Recall
WLOG, r = 1. If y ∈ B(1−ε)(x), then

k∑
i=1

u2
i (y) ≤ c(n)

(
1 + ρ(y)

1− ρ(y)

)n  
B1

u2.

Recall we rotated in k so u2(y) =
∑k

i=1 u
2
i (y) and we had the normalisation´

B1
u2 = 1. Thus

ˆ
B1−ε

k∑
i=1

u2
i ≤

C(n)

|B1−ε(x)|

ˆ
B(1−ε)(x)

(
1 + ρ(y)

1− ρ(y)

)n

.
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Now we use the Laplace comparison theorem to bump the estimate up to
the desired power ε−(1−n). We integrate by parts on the annulus,ˆ

B1−ε\B1/2

(1− ρ)−n =

ˆ
B1−ε\B1/2

(1− ρ)−n |∇ρ|2

=
1

n− 1

ˆ
B1−ε\B1/2

∇
(
(1− ρ)−(n−1) − ε−(1−n)

)
· ∇ρ

= − 1

n− 1

ˆ
∂B1/2

(
(1− ρ)−(n−1) − ε−(1−n)

)
− 1

n− 1

ˆ
B1−ε\B1/2

(
(1− ρ)−(n−1) − ε−(1−n)∆ρ

)
≤ Cε−(n−1)n− 1

ρ
≤ Cε−(n−1)n− 1
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where we use the Bishop-Gromov again to control the size of the region of
integration.

2 Lower Bound
Note that lemma 1.1 did not use the polynomial growth hypothesis. Now
we make use of the hypothesis for the next lemma. The assumption means
that such harmonic functions cannot grow too much "all the time" - a sort of
converse to the previous lemma.

Lemma 2.1. Let K be any finite dimensional subspace of Hp(M) of {u ∈
C∞(M) : ∆u = 0, |u(y)| ≤ C(1 + d(y, x0))

p}.
Then for any x ∈ M , ε ∈ (0, 1/2], r0 > 0, δ > 0, there exists r > r0 such

that if {ui}ki=1 is an orthonormal basis of K with respect to L2(Br(x)), we
have

k∑
i=1

ˆ
B(1−ε)r(x)

|ui|2 ≥ k(1− ε)2p+n+δ = (1− ε)2p+n+δ

ˆ
Br(x)

k∑
i=1

u2
i .

Proof. Fix x ∈ M , ε ∈ (0, 1/2], r0 > 0, δ > 0. The δ is here just to give a
little extra room to obtain a strict inequality.

Define rα = r0(1− ε)−α for α ∈ N.
To obtain a contradiction, suppose the claimed inequality does not hold

for r = rα. Let Gα be the inner-product on K coming from L2(Brα(x). If
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{ui}ki=1 is an orthonormal basis for K with respect to L2(Brα(x) so (Gα)ij =
δij. Then

(Gα−1)ij =

ˆ
B(1−ε)rα(x)

uiuj

hence

Tr(G−1
α ◦Gα−1) =

ˆ
B(1−ε)rα

k∑
i=1

|ui|2 < (1− ε)2p+n+δ

by the previous lemma, 1.1. By the arithmetic-geometric inequality,

det(G−1
α ◦Gα−1) ≤ ( 1

k
Tr(G−1

α ◦Gα−1))
k < (1− ε)(2ρ+n+δ)k.

Thus

det(G−1
α ◦G0) = det(G−1

α ◦Gα−1) det(G
−1
α−1◦Gα−2) det(G

−1
1 ◦G0) < (1−ε)(2ρ+n+δ)kα.

(1)
Fix an o/n basis for G0, {ui}ki=1 so

´
Br0 (x)

uiuj = δij. Since ui ∈ K ⊆ Hp,

|ui(y)| ≤ C(1 + d(x, y))p.

Again using the arithmetic-geometric inequality and Bishop-Gromov,

k det(G−1
0 ◦Gα)

1/k ≤ Tr(G−1
0 ◦Gα) =

k∑
i=1

ˆ
Br0 (x)

|ui|2

≤ Cr2pα k |Brα |
≤ Ck |Br0| (1− ε)−nαr2p0 (1− ε)1−2p

But by (1) the left hand side satisfies

k det(G−1
0 ◦Gα)

1/k > k(1− ε)−(2p+n+δ)α

giving
k(1− ε)−(2p+n+δ)α < Ck |Br0 | (1− ε)−nαr2p0 (1− ε)1−2p.

Simplifying gives for any α,

(1− ε)−αδ ≤ C

with C independent of α. Sending α → ∞ gives a contradiction.

We see in the last inequality where the δ > 0 is required and that the
proof does not work with δ = 0.
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3 Harmonic Functions With Polynomial Growth
Now we may prove the main theorem by playing the two lemmas off against
each other.

Theorem 3.1.
dimHp(M) ≤ C(n)pn−1

where

Hp(M) = {u ∈ C∞(M) : ∆u = 0, |u(x)| ≤ C(1 + d(x, x0)
p}

Proof. Let K ⊆ Hp be any finite dimensional subspace, ε ∈ (0, 1/2], r0 = 1
and any δ > 0 as in Lemma 2.1 such that

ˆ
Br(1−ε)

k∑
i=1

|ui|2 ≥ k(1− ε)2p+n+δ.

On the other hand by Lemma 1.1

ˆ
Br(1−ε)

k∑
i=1

|ui|2 ≤ C(n)ε−(n−1).

Combining these gives,

k ≤ C(n)ε−(n−1)(1− ε)−(2p+n+δ).

Now we choose ε = 1
2p

giving,

k ≤ C(n)2n−1pn−1(1− 1
2p
)−2psnεδ ≤ C̃(n)pn−1

where we bounded (1− 1
2p
)−2p ≤ e.

4 Minimal Surfaces
Remark 4.1. Colding-Minicozzi also consider the situation Mn ⊂ RN a min-
imal submanifold with Euclidean volume growth: V (Br ∩M) ≤ C0r

n. Then
the dimensions of the space of harmonic functions of polynomial growth of
order p is bounded by C(n,C0)p

n−1.
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The idea is to use the Michael-Simon inequality of harmonic functions
for minimal submanifolds to show that if ∆u = 0, we have the mean value
inequality

u(x) ≤ C

rn

ˆ
Br∩M

u2

By the monotonicity formula,

d

dr

|Br ∩M |
rn

≥ 0.

Combined with Euclidean volume growth, we get

|Br ∩M | ∼ rn.

Then the mean value inequality is now a real mean value inequality and∣∣∣∣BR ∩M

Br ∩M

∣∣∣∣ ≤ C

(
R

r

)n

and the proof of the main theorem goes through as before.

Corollary 4.2. In the situation of the remark, M is contained in a subspace
of RN of dimension depending only on n,C0.

Proof. Since M is minimal, the coordinate functions are harmonic and of
linear growth rate. Thus each xi ∈ H1(M). Then apply dimension bound.
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