Transcript: Ancient solutions of the heat equation with polynomial growth 02

Glen Wheeler (notes taken by Paul Bryan)
October 282020

1 Ten step proof of the Representation Formula

1. Monotonicity (via Li-Yau differential Harnack) (proof sketch)
2. Bernstein theorem for completely monotone functions (won't prove)
3. Apply Fubini
4. Apply inverse Laplace transform
5. Integral estimate
6. PDE for $h(\cdot, t)$
7. Harnack inequality for measures
8. Radon-Nikodym
9. PDE for $\frac{d \nu_{x}}{d \nu_{0}}$
10. Apply representation formula (Caffarelli-Littman) (won't prove)

2 Step 4: Inverse Laplace transform

So

$$
\int_{0}^{\infty} e^{-t s} h(x, s) d s=\frac{1}{t} u(x,-t) .
$$

Bernstein gives extension of t into right half complex plane and heat equation estimates give Laplace transform is invertible,

$$
h(x, t)=\frac{1}{2 \pi i} \int_{-1-i \infty}^{-1+i t} e^{s t} \frac{u(x,-s)}{s} d s
$$

3 Step 5: Integral estimate

Recall that $\Delta f^{x}(t)+\partial_{t} f^{x}(t)=0$ in $\mathbb{R}^{n} \times[0, \infty)$. Testing against a smooth cut-off function $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$,

$$
\begin{aligned}
\partial_{t} \int_{\mathbb{R}^{n}} f^{x}(t) \phi(x) d x & =-\int_{\mathbb{R}^{n}} \phi(x) \Delta f^{x} d x \\
& =-\int_{\mathbb{R}^{n}} \Delta \phi(x) f^{x}(t) d x \\
& =-\int_{\mathbb{R}^{n}} \int_{0}^{\infty} s e^{-t s} \phi(x) d \nu(x, s) .
\end{aligned}
$$

Thus

$$
\int_{\mathbb{R}^{n}} \int_{0}^{\infty} s e^{-t s} \phi(x) d \nu(x, s)=\int_{\mathbb{R}^{n}} \int_{0}^{\infty} e^{-t s} \Delta \phi(x) d \nu(x, s)
$$

which is a Laplace transform again:

$$
\int_{0}^{\infty} e^{-t s} \int_{\mathbb{R}^{n}}(\Delta \phi(x)-s \phi(x)) d x d \nu(x, s)=0
$$

for all $t>0$ and $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$.

4 Step 6: PDE for $h(\cdot, t)$

Define the signed measure η_{ϕ} on $[0, \infty)$ by

$$
d \eta_{\phi}=\int_{\mathbb{R}^{n}}(\Delta \phi(x)-s \phi(x)) d \nu(x, s) .
$$

We've shown,

$$
\mathrm{LT}\left(\eta_{\phi}\right)=0 \Rightarrow \eta_{\phi}=0
$$

That is,

$$
0=\eta_{\phi}([0, t])=\int_{\mathbb{R}^{n}}[\Delta \phi(x) \underbrace{\int_{0}^{t} d \nu(x, s)}_{h(x, t)}-\phi(x) \int_{0}^{t} s d \nu(x, s)] d x
$$

Side note:

$$
h(x, u)=\int_{0}^{u} d \nu(x, s)
$$

and so $h=d x / d \nu(x, s)$ and we can integrate

$$
\int_{0}^{t} s d \nu(x, s)
$$

by parts. Thus

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \Delta \phi(x) \int_{0}^{t} d \nu(x, s) & =\int_{\mathbb{R}^{n}} \phi(x) \int_{0}^{t} s d \nu(x, s) \\
& =\int_{\mathbb{R}^{n}} \phi(x)\left(t h(x, t)-\int_{0}^{t} h(x, s) d s\right) d x
\end{aligned}
$$

Because this is true for all $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right), h$ satisfies the integrodifferential equation,

$$
\Delta h(x, t)=\operatorname{th}(x, t)-\int_{0}^{t} h(x, s) d s
$$

hence h is smooth as the solution of

$$
(\Delta-t) h(x, t)=-\int_{0}^{t} h(x, s) d s
$$

5 Step 7: Prep for Harnack

Fix x and consider the measure ν_{x} :

$$
\nu_{x}([a, b])=h(x, b)-h(x, a) .
$$

Aim is to turn the equation for h into estimates for $\Delta \nu$.
We have (writing $I=[a, b]$),

$$
\begin{aligned}
\Delta \nu_{x}(I)= & \Delta h(x, b)-\Delta h(x, a) \\
= & b h(x, b)-\int_{0}^{b} h(x, s) d s \\
& -a h(x, a)+\int_{0}^{a} h(x, s) d s \\
= & b h(x, b)-a h(x, a)-\int_{a}^{b} h(x, s) d s \\
= & b(\underbrace{h(x, b)-h(x, a)}_{\nu_{x}(I)})-\int_{a}^{b} \underbrace{h(x, s)-h(x, a)}_{\geq 0} d s
\end{aligned}
$$

using side calculation: $(b-a) h(x, a)=\int_{a}^{b} h(x, a) d s$ and recalling h is nondecreasing.

Thus,

$$
\Delta \nu_{x}(I) \leq b \nu_{x}(I)
$$

or equivalently,

$$
\frac{\Delta \nu_{x}(I)}{\nu_{x}(I)} \leq b .
$$

Similarly, from below,

$$
\begin{aligned}
\Delta \nu_{x}(I) & =b h(x, b)-a h(x, a)-\int_{a}^{b} h(x, s) d s \\
& =a(\underbrace{h(x, b)-h(x, a))}_{\nu_{x}(I)}-\int_{a}^{b} \underbrace{h(x, s)-h(x, b)}_{\leq 0} d s \\
& \geq a \nu_{x}(I) .
\end{aligned}
$$

Thus

$$
\frac{\Delta \nu_{x}(I)}{\nu_{x}(I)} \geq a
$$

Let

$$
c(x)=\frac{\Delta \nu_{x}(I)}{\nu_{x}(I)}
$$

satisfies,

$$
|c(x)| \leq b
$$

6 Step 8: Harnack

The Harnack inequality for $L=\Delta-C$ with $I=[0, b]$ gives,

$$
\nu_{x}(I) \leq c(|x|, b) \nu_{0}(I) .
$$

That is ν_{x} is absolutely continuous with respect to ν_{0}.
Radon-Nikodym then gives,

$$
\frac{d \nu_{x}}{d \nu_{0}}(s) \leq c(|x|, b), \quad s \leq b
$$

7 Step 9: PDE for $\frac{d \nu_{x}}{d \nu_{0}}$

From the integral estimate we obtained,

$$
\int_{0}^{\infty} e^{-t s} \int_{\mathbb{R}^{n}}(\Delta \phi(x)-s \phi(x)) d \nu_{x}(s)=0 .
$$

Now we are able to make a change of variables:

$$
0=\int_{0}^{\infty} e^{-t s}\left(\int_{\mathbb{R}^{n}}(\Delta \phi(x)-s \phi(x)) \frac{d \nu_{x}}{d \nu_{0}}(s) d x\right) d \nu_{0}(s)
$$

This is the Laplace transform of the signed measure $\int_{\mathbb{R}^{n}}(\Delta \phi(x)-s \phi(x)) \frac{d \nu_{x}}{d \nu_{0}}(s) d x$ so for ν_{0}-a.e. s we have,

$$
\int_{\mathbb{R}^{n}}(\Delta \phi(x)-s \phi(x)) \frac{d \nu_{x}}{d \nu_{0}}(s) d x=0
$$

for every $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$. So, for ν_{0}-a.e. s,

$$
(\Delta-s) \frac{d \nu_{x}}{d \nu_{0}}=0
$$

and $\frac{d \nu_{x}}{d \nu_{0}}$ is smooth.

8 Step 10: Caffarelli-Littman '82

See also Kaprelovic ' 67 and Koranyi ' 79.
From

$$
(\Delta-s) \frac{d \nu_{x}}{d \nu_{0}}=0
$$

we have the representation formula,

$$
\frac{d \nu_{x}}{d \nu_{0}}(s)=\int_{\mathbb{S}^{n-1}} e^{x \cdot \xi \sqrt{s}} d \mu_{s}(\xi)
$$

for μ_{s} a Borel measure on \mathbb{S}^{n-1}.
This completes the proof because,

$$
u(x,-t)=\int_{0}^{\infty} e^{-s t} d \nu_{x}(s)
$$

implies

$$
u(x, t)=\int_{0}^{\infty} \int_{\mathbb{S}^{n-1}} e^{s t+x \cdot \xi \sqrt{s}} d \mu_{s}(\xi) d \nu_{0}(s)
$$

9 Remarks on Manifold Setting

Replace \mathbb{R}^{n} with a Riemannian manifold $\left(M^{n}, g\right)$.
For (M, g) complete with Ric $\geq 0 \mathrm{Li}-Y a u$ still applies to give

$$
u(x, t)=\int_{0}^{\infty} e^{t s} h(s, x) d x
$$

where h solves

$$
(\Delta-s) h(s, x)=0
$$

Classifying solutions of this equation is the hard part.
Key concept: Martin boundary. (Martin '41, Murata ('86, '93, '02, '07)
The general theory gives,

$$
h(x)=\int_{\Sigma_{0}} P_{s}(x, w) d \mu(w)
$$

for μ a unique, non-negative Borel measure on Σ with $\mu\left(\Sigma-\Sigma_{0}\right)=0$.

Here,

$$
\Sigma_{0}=\{[w]: P(\cdot, w) \text { is minimal }\}
$$

where the term minimal means that if $0 \leq v(x) \leq P(x, w)$ then $v(x)=$ $P(x, w)$. Also,

$$
P_{s}(x, y)= \begin{cases}\frac{\Gamma_{s}(x, y)}{\Gamma_{s}\left(x_{0}, y\right)}, & y \neq x_{0} \\ 0, & y=x_{0}, x \neq y \\ 1, & x=y=x_{0}\end{cases}
$$

Γ_{s} is the minimal Green's function for $\Delta-s$.
Theorem 9.1 (Lin-Zhang). Let (M, g) be a complete Riemannian manifold with Ric ≥ 0. Suppose u is a non-negative, ancient solution of $\partial_{t} u=\Delta_{g} u$. Then

- $u(x,-t)$ is completely monotone in t,
- \exists family of non-negative Borel measures $\mu=\mu(\cdot, s)$ on the Martin boundary, Σ_{s} for $\Delta-s$, and a Borel measure ρ on $[0, \infty)$ such that

$$
u(x, t)=\int_{0}^{\infty} \int_{\Sigma_{s}} e^{t s} P_{s}(x, w) d \mu(w, s) d \rho(s)
$$

Remark 9.2. The condition Ric ≥ 0 is not strictly necessary. It may be replaced by something like volume doubling and Poincare inequality.

10 Questions

- What are conditions on (M, g) such that

$$
\Sigma_{s_{1}} \simeq \Sigma_{s_{2}}
$$

in some sense such as under the motion of a Killing or conformal Killing field.

- Are there conditions determining the structure of Σ_{s} (compare Schoen for bounded sectional curvature).
- What is P_{s} ?

