Transcript: A family of 3d steady gradient solitons that are flying wings

Yi Lai (notes taken by Paul Bryan)

November 252020

1 Steady Gradient Solitons (SGS)

Definition 1.1. A steady gradient soliton is a metric g such that

$$
\text { Ric }=\frac{1}{2} \mathcal{L}_{V} g=\nabla^{2} f .
$$

where $V=\nabla f$.
Given such a metric, let

$$
g(t)=\varphi_{t}^{*} g
$$

where φ_{t} is the flow of $-\nabla f$ and $t \in(-\infty, \infty)$. Then

$$
\partial_{t} g=\varphi_{t}^{*} \mathcal{L}_{-\nabla f} g=-2 \varphi_{t}^{*} \operatorname{Ric}(g)=-2 \operatorname{Ric}(g(t))
$$

so g is an eternal RF (Ricci Flow).
Example 1.2. Hamilton's Cigar Solition Σ^{2} :

$$
g=d r^{2}+\varphi^{2}(r) d \theta^{2}
$$

with $\theta \in[0,2 \pi)$ and where $\lim _{r \rightarrow \infty} \varphi(r)<\infty$.

$$
\left(\Sigma, p_{i}\right) \rightarrow \mathbb{R} \times \mathbb{S}^{1}
$$

Σ collapsed.

Example 1.3. Bryan solition: $n \geq 3$.

$$
g=d r^{2}+\varphi^{2}(r) g_{\mathbb{S}^{n-1}}
$$

with
warping asymptotics: $\varphi(r) \simeq r^{1 / 2}$
Scalar curvature asymptotics: $R \simeq r^{-1}$

$$
\left(\Sigma, R\left(p_{i}\right) g, p_{i}\right) \rightarrow \mathbb{R} \times \mathbb{S}^{n-1}
$$

non-collapsed.

2 Some classification of 3d SGS

Known 3d SGS (non-flat): $\mathbb{R} \times$ Cigar (gradients) and Bryan solition $n=3$.

1. $\mathrm{Rm} \ngtr 0$: By the maximum principle, $\mathbb{R} \times$ Cigar .
2. (Brendle) non-collapsed implies Bryant soliton
3. (Deng-Zhu) $\frac{C^{-1}}{r} \leq R \leq \frac{C}{r}$ implies Bryant soliton.
4. (Catino-Monticelli-Mastrolia) If $\lim _{r \rightarrow \infty} \int_{B(p, r)} \frac{1}{r} R=0$ implies quotients of $\mathbb{R} \times$ Cigar.

3 Hamilton's Flying Wing Conjecture

Hamilton's conjecture: there exists a 3d SGS that is a flying wing.
Definition 3.1. A flying wing is a SGS (M, g) with $\mathrm{Rm} \geq 0$ such that the blow-down is $C_{\infty}(g)=\operatorname{Cone}([0, \theta]), \theta \in(0, \pi)$.

The previous examples are not flying wings: $\mathbb{R} \times$ Cigar has $\theta=\pi$ while the Bryant solition has $\theta=0$. Flying wings also do not fit into the classification results above.

4 Flying Wings in MCF

- Constructed by X.J Wang in $\mathbb{R}^{n}, n \geq 3$
- Complete existence results by Hoffman-Ilmanen-Martin-White and Bourni-Langford-Tingalia
- Uniquness by HIMW in $n=3$ and by BLT in $n \geq 3$.

5 Analogies

	MCF	RF
$n=2$	Grim Reaper	Cigar Soliton
$n=3$	Collapsed: Flying Wings	Collapsed: Flying wing
	New examples (BLT). Non collapsed: Bowl soliton	(Thm 1, ($n=3$ 3) and Thm 2) Non collaped: Bryant soliton
$n \geq 4$	Collapsed: Flying wings. non-collapsed:	Collapsed: Flying wings? Non collapsed: Thm 1 $(n \geq 4)$

6 Theorems

Theorem 6.1 (Thm 1). $\forall \alpha \in(0,1) \exists a \mathbb{Z}_{2} \times O(n-1)$-symmetric $S G S$ (M, g, f, p) with $\mathrm{Rm}>0$ such that

$$
\lambda_{1}=\alpha \lambda_{2}=\cdots=\alpha \lambda_{n}
$$

where λ_{i} are eigenvalues of Ric at p.
Proof. $n=3$
Let $\left\{X_{i u}, u \in[0,1]\right\}_{i=1}^{\infty}$ be a sequence of smooth families of metrics on \mathbb{S}^{2} such that

1. $\mathbb{Z}_{2} \times O(2)$-symmetric
2. $K\left(X_{i u}\right)>1$
3. $X_{i 0}=c_{i} g_{\mathbb{S}^{2}}, c_{i}>0$,
4. $\operatorname{diam}\left(X_{i 1} \rightarrow \pi\right.$ as $i \rightarrow \infty$,
5. $\sup _{u \in[0,1]} \operatorname{vol}\left(X_{i u}\right) \rightarrow 0$ as $i \rightarrow \infty$.

Recall Dernelle's result:
There exists a unique EGS (Expanding Gradient Soliton) $\left(M_{i n}, g_{i n}, p_{i n}\right)$ with $\mathrm{Rm}>0$ such that $C_{\infty}\left(g_{i n}\right)=C\left(X_{i n}\right)$ and

- $R\left(p_{i n}\right)=1$
- $X_{i n} \rightarrow X_{i n} \xrightarrow{\text { Dernelle }}\left(M_{i n}, g_{i n}, p_{i n}\right)$

Lemma 6.2. A sequence of $E G S$ with $\mathbb{Z}_{2} \times O(n-1)$-symmetry and $\mathrm{Rm}>0$ with $R\left(p_{i}\right)=1$ and $A V R\left(g_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$ then

$$
\left(M_{i}, g_{i}, p_{i}\right) \xrightarrow{\text { Cheeger-Gromov }}(M, g, p) \quad S G S R(p)=1 .
$$

Using Dernelle's result and the lemma

$$
\left(M_{i 0}, g_{i 0}, p_{i 0}\right) \rightarrow \text { Bryant soliton (by rotational symmetry), } \quad \frac{\lambda_{1}}{\lambda_{3}}=1
$$

and

$$
\left(M_{i 1}, g_{i 1}, p_{i 1}\right) \rightarrow \mathbb{R} \times \text { Cigar, } \quad \frac{\lambda_{1}}{\lambda_{3}}=0
$$

For any $\alpha_{0} \in(0,1)$ there exists $u_{i} \in(0,1)$ such that $\frac{\lambda_{1}}{\lambda_{3}}\left(g_{i u_{i}}\right)=0$. Applying the lemma

$$
\left(M_{i n_{i}}, g_{i n_{i}}, p_{i n_{i}}\right) \rightarrow(M, g, p) \text { a SGS } \quad \frac{\lambda_{1}}{\lambda_{3}}(g)=\alpha_{0} \text { at } p
$$

The next theorem excludes the blow down is a ray so the construction of Thm 1 gives flying wings.

Theorem 6.3 (Thm 2). Let (M, g, p) be a $\mathbb{Z}_{2} \times O(2)$-symmetric 3d SGS, and $C_{\infty}(g)=$ a ray $=\operatorname{Cone}(\{0\})$. Then it is a Bryant soliton.
Proof. In order to obtain a contradiction, suppose it is not a Bryant soliton.
The profile curve Γ is fixed by the $O(2)$ action and the section Σ is fixed by the \mathbb{Z}_{2} action. Take a geodesic in Σ with $\gamma(0)=p$. Away from the edges

$$
g=g_{0}+\varphi^{2} d \theta, \theta \in[0, \pi)
$$

with g_{0} totally geodesic.
Define

- $h_{1}(s)=d(\gamma(s), \Gamma)$
- $h_{2}(s)=\varphi(\gamma(s))$

Computing gives

$$
\frac{h_{2}^{\prime}(2)}{h_{2}(s)} \leq C R(\gamma(s))
$$

Lemma 6.4.

$$
R(\gamma(s)) \leq C h_{1}^{-2}(s)
$$

Lemma 6.5.

$$
\frac{h_{2}(s)}{h_{1}(s)} \rightarrow 0, s \rightarrow \infty
$$

Lemma 6.6.

$$
h_{1}(s) h_{2}(s) \geq C s, \quad s \rightarrow \infty
$$

Using the lemmas,

$$
h_{2}(s) \leq C s^{\epsilon} \forall \epsilon<1 / 2
$$

and

$$
h_{2}(s) \leq C \rightarrow \lim _{s \rightarrow \infty} R(\Gamma(s))>0
$$

Lemma 6.7. Let (M, g) be a $\mathbb{Z}_{2} \times O(2)$-symmetric $S G S$. If

$$
C_{\infty}(g)=\operatorname{Cone}([0, \alpha]), \alpha \in[0, \pi]
$$

Then

$$
\lim _{s \rightarrow \infty} R(\Gamma(s))=R(p) \sin \frac{\alpha}{2}
$$

We have

$$
\begin{aligned}
\left.0 \simeq\left\langle\nabla f, \sigma^{\prime}(\gamma)\right\rangle\right|_{-D} ^{D} & =\int_{-D}^{D} \partial_{r}\left\langle\nabla f, \sigma^{\prime}(\gamma)\right\rangle d r \\
& =\int_{-D}^{D} \operatorname{Ric}\left(\sigma^{\prime}(\gamma), \sigma^{\prime}(\gamma)\right) d r \\
& =2 R^{1 / 2}(\Gamma(s))
\end{aligned}
$$

Thus

$$
\lim _{s \rightarrow \infty} R(\Gamma(s))=0
$$

contradicting $\mathrm{Rm}>0$ for the case $\alpha=0$.

