## MATH704 DG Sem 2, 2018: Assignment 01

## 1 Question 01: Tubular Neighbourhood

Let $\gamma:(a, b) \rightarrow \mathbb{R}^{2}$ be a regular smooth curve.

1. Show that for every $t_{0} \in(a, b)$, there is a local, tubular neighbourhood of $\gamma$. That is, there is $\epsilon>0$ and a $\delta>0$ such that

$$
\Gamma(t, u)=\gamma(t)+u N(t), \quad t \in\left(t_{0}-\delta, t_{0}+\delta\right), \quad u \in(-\epsilon, \epsilon)
$$

is diffeomorphic with an open set $V \subset \mathbb{R}^{2}$ containing $\left\{\gamma(t): t \in\left(t_{0}-\right.\right.$ $\left.\left.\delta, t_{0}+\delta\right)\right\}$.
2. Choose one of the following two options:
(a) Show that for each fixed $u$, the curves $\gamma_{u}(t)=\Gamma(t, u)$ are parallel in the sense that $T_{u}(t)=T_{0}(t)=T_{\gamma}(t)$ for each $u \in(-\epsilon, \epsilon)$ and $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$. Give an example of a curve for which the map $\Gamma$ is a diffeomorphism for all $\epsilon>0$. Give an example where this is false.
(b) Pick any interesting curve $\gamma$ and plot the parallel curves $\gamma_{u}$ described in the other option and showing parallel tangent vectors. Plot a curve where $\Gamma$ is a diffeomorphism for all $\epsilon$ including showing the normal, and plot a curve where it is false showing points where $\Gamma\left(t_{1}, u_{1}\right)=\Gamma\left(t_{2}, u_{2}\right)$ for some $\left(t_{1}, u_{1}\right) \neq\left(t_{2}, u_{2}\right)$.
Please by sure to provide a copy of your code electronically so that I can also run the code.
3. Show that for any $c, d$ with $a<c<d<b$, there exists a global tubular neighbourhood of $\gamma$ restricted to $[c, d]$. That is, there exists an $\epsilon>0$
such that for $t \in(c, d)$ and $u \in(-\epsilon, \epsilon), \Gamma$ is a diffeomorphism onto an open set $V \subset \mathbb{R}^{2}$ containing $\{\gamma(t): t \in(c, d)\}$.

Hint: You may assume the following compactness result: Since the interval $[c, d]$ is closed and bounded there are finitely many intervals $\left\{I_{i}=\left(a_{i}, b_{i}\right)\right\}_{i=1}^{N}$ such that $[c, d] \subset \cup_{i=1}^{N} I_{i}$ and for which $\Gamma_{i}=\left.\Gamma\right|_{I_{i}}$ is a diffeomorphism onto an open set for $u=\in\left(-\epsilon_{i}, \epsilon_{i}\right)$.
Use the compactness result to get a uniform $\epsilon>0$ (i.e. independent of $t \in[c, d])$ for which $\left.\Gamma\right|_{I_{i}}$ is a diffeomorphism.
Now show that $\Gamma$ is in fact injective for $t \in(c, d)$ and $u \in(-\epsilon, \epsilon)$ and argue that this proves $\Gamma$ has a well defined smooth inverse.

## 2 Question 02: Curvature determines the curve

Let $\kappa:(a, b) \rightarrow \mathbb{R}$ be any smooth function and let $\theta=\int \kappa$ be any antiderivative. Fix the orientation so that $N=J(T)$ where $J$ is counter-clockwise rotation by $\pi / 2$.

1. Show that

$$
\gamma(s)=\left(\int_{a}^{s} \cos (\theta(t)) d t, \int_{a}^{s} \sin (\theta(t)) d t\right)
$$

is a regular curve with curvature equal to $\kappa$.
2. Conversely show that if $\gamma$ is any other curve with curvature equal to $\kappa$ then there is a $\theta_{0} \in \mathbb{R}$ and a $p \in \mathbb{R}^{2}$ such that

$$
\gamma(s)=\left(\int_{a}^{s} \cos \left(\theta(t)+\theta_{0}\right) d t, \int_{a}^{s} \sin \left(\theta(t)+\theta_{0}\right) d t\right)+p
$$

where $\theta$ is the anti-derivative chosen in the previous part.
Hint: you may assume that the function $\varphi$ determined (up to addition of integer multiples of $2 \pi)$ by $T(s)=(\cos \varphi(s), \sin \varphi(s))$ is smooth.
If you're feeling especially motivated, consider what happens under reflections.
3. Choose one of the following two options:
(a) Show that if $\varphi(s)$ denotes the angle the tangent $T(s)$ makes with the $x$-axis, then $\varphi(s)=\theta(s)+\theta_{0}$ for some $\theta_{0} \in \mathbb{R}$. Show moreover that the angle between $T\left(s_{1}\right)$ and $T\left(s_{2}\right)$ satisfies

$$
\varangle T\left(s_{1}\right), T\left(s_{2}\right)=\int_{s_{1}}^{s_{2}} \kappa d s
$$

This explains the phrase Turning Tangents.
(b) Pick any interesting curve $\gamma$. Write a program that takes as input $t_{1}, t_{2}$ and outputs the angle $\varangle T\left(s_{1}\right), T\left(s_{2}\right)$ and $\int_{s_{1}}^{s_{2}} \kappa d s$. They should be equal!
Please by sure to provide a copy of your code electronically so that I can also run the code.

## 3 Question 03: Space Curves

Let $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ be a regular, smooth space curve.

1. Show that $\gamma$ lies in a plane if and only if the torsion $\tau \equiv 0$.
2. Define the curve

$$
\gamma(t)= \begin{cases}\left(t, 0, e^{-1 / t^{2}}\right), & t>0 \\ \left(t, e^{-1 / t^{2}}, 0\right), & t<0 \\ (0,0,0), & t=0\end{cases}
$$

You may assume the result that the function

$$
f(t)= \begin{cases}e^{-1 / t^{2}}, & t \geq 0 \\ 0, & t \leq 0\end{cases}
$$

is smooth and such that $f^{(k)}(0)=0$ for all $k \in \mathbb{N}$. Moreover,

$$
f^{(k)}(t)=p_{k}\left(t^{-1}\right) f(t)
$$

where $p_{k}$ is a polynomial of degree $3 k$ with $p_{k}(0)=0$.
(a) Show that $\gamma$ is a regular smooth curve for all $t$.
(b) Show that if $t \neq 0, \pm \sqrt{2 / 3}$, then $\kappa(t) \neq 0$. Show also that $\kappa(0)=$ 0.

Hint: Feel free to lookup formulas for $\kappa$ in terms of an arbitrary parameter $t$. You'll need this since the parametrisation given is not by arc length. A very useful formula is $\partial_{s}=(1 / v) \partial_{t}$ where $v=\left|\gamma^{\prime}\right|$ from which an expression for $\kappa$ is readily obtained. You may also find it convenient to express the various quantities in terms of $f$ and it's derivatives rather than explicitly writing everything out.
3. Let $\gamma$ be the same curve as in the previous question.
(a) Show that the normal is discontinuous at $t=0$ by showing that

$$
\lim _{t \rightarrow 0^{+}} N(t)=(0,0,1)
$$

while

$$
\lim _{t \rightarrow 0^{-}} N(t)=(0,1,0)
$$

(b) Show that $\tau \equiv 0$ for $t \neq 0, \pm \sqrt{2 / 3}$ so that defining $\tau \equiv 0$ for all $t$ gives a continuous torsion, yet $\gamma$ does not lie in a plane.

