MATH704 DG Sem 2, 2018: Assignment 03

Instructions: - Due 9th November

Your grade will be determined from your 3 best answers. Each question has three parts worth 5 points each giving a maximum of 45 points in total. Feel free to turn in answers for all four questions, but only the three best will count.

1 Question 01: The Gauss Map of a Closed Surface

A closed surface $S \subseteq \mathbb{R}^{3}$ is a regular surface such that

1. S is a closed subset of \mathbb{R}^{3},
2. S is bounded: there exists an $R>0$ such that

$$
S \subseteq B_{R}(0)=\left\{x^{2}+y^{2}+z^{2} \leq R^{2}\right\}
$$

A plane $P \subset \mathbb{R}^{3}$ divides \mathbb{R}^{3} into two sides: $H^{ \pm}=\left\{x \in \mathbb{R}^{3}: \pm\left\langle\mathbf{n}, x-x_{0}\right\rangle>0\right\}$ where $x_{0} \in P$ is any point in P, and \mathbf{n} is the normal to P. A set S lies on one side of P if $S \subseteq H^{+}$or $S \subseteq H^{-}$.

Prove that the Gauss map of a closed, oriented surface (compact, no boundary) S is surjective as follows:

1. Suppose there is a plane P intersecting S at x_{0} such that in an open neighbourhood $V \subset S$ of x_{0}, S lies on one side of P. Prove that P is the tangent plane to S at x_{0}.
Hint: In a local parametrisation $\phi: U \rightarrow V$, show the function $f(u, v)=\left\langle\phi(u, v)-x_{0}, \mathbf{n}\right\rangle$ has a local minimum at $\left(u_{0}, v_{0}\right)=\phi^{-1}\left(x_{0}\right)$. Hence the first derivative test implies that $\frac{\partial}{\partial u} f=\frac{\partial}{\partial v} f=0$. Now what are the coordinate tangent vectors at $\left(u_{0}, v_{0}\right) ?$
2. Using the definition of closed surface above, show that for any unit vector $\mathbf{n} \in \mathbb{R}^{3}$, there exists a plane P with unit normal vector \mathbf{n} such that $P \cap S=\emptyset$.
Now consider the map

$$
\Phi(t, Z)=Z+t \mathbf{n}, t \in \mathbb{R}, Z \in P
$$

Then for each $t_{0} \in \mathbb{R}, P(t)=\left\{\Phi\left(t_{0}, Z\right): Z \in P\right\}$ is a plane and $P(0)=P$.
Show that there exists a $t_{0} \in \mathbb{R}$ such that $P\left(t_{0}\right) \cap S \neq \emptyset$ and S lies on one side of $P\left(t_{0}\right)$.
3. Using the previous parts show that given any unit vector \mathbf{n}, there is a point $x_{0} \in S$ such that the unit normal $N(x)=\mathbf{n}$, and hence the Gauss map is surjective.

2 Question 02: Surfaces of Revolution

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly positive function with continuous second derivative and let S be the surface of revolution parameterized locally by

$$
\varphi(z, \theta)=(f(z) \cos \theta, f(z) \sin \theta, z)
$$

For all the following calculations, leave your answer in terms of $f, f^{\prime}, f^{\prime \prime}$.
Recall that the matrix representation of g in these coordinates is

$$
g=\left(\begin{array}{cc}
1+\left(f^{\prime}\right)^{2} & 0 \\
0 & f^{2}
\end{array}\right) .
$$

1. Show that the matrix representation of the second fundamental form A in these coordinates is

$$
A= \pm \frac{1}{\sqrt{1+\left(f^{\prime}\right)^{2}}}\left(\begin{array}{cc}
-f^{\prime \prime} & 0 \\
0 & f
\end{array}\right)
$$

and that the matrix representation of $d N$ is

$$
d N= \pm \frac{1}{\sqrt{1+\left(f^{\prime}\right)^{2}}}\left(\begin{array}{cc}
\frac{f^{\prime \prime}}{1+\left(f^{\prime}\right)^{2}} & 0 \\
0 & \frac{-1}{f}
\end{array}\right) .
$$

where \pm depends on your chosen orientation.
2. Show that $(1,0)$ and $(0,1)$ are eigenvectors of $d N$ and show that the corresponding eigenvalues are

$$
k_{1}=\frac{f^{\prime \prime}}{\left(1+\left(f^{\prime}\right)^{2}\right)^{3 / 2}}, \quad k_{2}=\frac{-1}{f \sqrt{1+\left(f^{\prime}\right)^{2}}} .
$$

3. Calculate H, K and show that $K \equiv 0$ if and only if $f(z)=a z+b$ for some $a, b \in \mathbb{R}$.

3 Question 03: The Sphere

1. On $\mathbb{S}^{n}=\left\{x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right\}$ let $N=(0, \cdots, 0,1)$ and $S=(0, \cdots, 0,-1)$ denote the north and south poles respectively. Let π_{N} and π_{S} denote stereographic projection based at N and S respectively.
Show that $\pi_{N}: \mathbb{S}^{n} \backslash\{N\} \rightarrow \mathbb{R}^{n}$ and $\pi_{S}: \mathbb{S}^{n} \backslash\{S\} \rightarrow \mathbb{R}^{n}$ are bijections.
2. Show that the transition map $\tau_{N S}=\pi_{N} \circ \pi_{S}^{-1}$ maps $\mathbb{R}^{n} \backslash\{0\}$ diffeomorphicaly with itself.
3. Show that the metric on \mathbb{R}^{n} in coordinates $\pi_{N}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{S}^{n}$ is

$$
g_{N}(x)=\varphi(x) \delta
$$

where δ is the usual Euclidean metric and

$$
\varphi(x)=\frac{4}{\left(1+\sum_{i=1}^{n}\left(x_{i}\right)^{2}\right)^{2}}
$$

Remark: A metric of the form $\varphi \delta$ is called conformal to δ. In this case, since δ is the Euclidean metric which is flat, g_{N} is called conformally flat. Since the sphere is covered by the two open sets $\mathbb{S}^{n} \backslash\{N\}$ and $\mathbb{S}^{n} \backslash\{S\}$ on which it is conformally flat, the spherical metric is locally conformally flat. It is however, not globally conformally flat since a basic result in topology says that the sphere is not homeomorphic to any Euclidean space.

4 Question 04: Projective Space

1. Let $\mathbb{R} \mathbb{P}^{n}$ denote the real projective space of dimension n. Show that for each $i=1, \ldots, n+1$ the maps

$$
\varphi_{i}:[V] \in U_{i} \mapsto \frac{1}{V_{i}} \hat{V}_{i} \in \mathbb{R}^{n}
$$

are well defined bijections where

$$
U_{i}=\left\{\left[\left(v_{1}, \ldots, v_{n+1}\right)\right] \in \mathbb{R P}^{n}: v_{i} \neq 0\right\}
$$

and

$$
\hat{V}_{i}=\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n+1}\right) \in \mathbb{R}^{n}
$$

denotes the n-vector obtained from the $(n+1)$-vector V by removing the i 'th entry. Also show that the sets $U_{i}, i=1, \ldots, n+1$ cover $\mathbb{R P}^{n}$.
Remark: The maps $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ are called affine charts.
2. Show the transition map

$$
\tau_{12}=\varphi_{1} \circ \varphi_{2}^{-1}
$$

is a diffeomorphism of the open set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1} \neq 0\right\}$ with the open set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{2} \neq 0\right\}$.
Remark: All the transition maps $\tau_{i j}$ with $i \neq j$ are of essentially the same form, just with i swapped with 1 and j swapped with $\backslash 2 \backslash)$. Thus all the transition maps $\tau_{i j}$ are diffeomorphisms.
3. Show that the map

$$
\pi: V \in \mathbb{S}^{n} \rightarrow[V] \in \mathbb{R}^{n} \mathbb{P}^{n}
$$

is smooth. That is, with respect to the stereographic charts for \mathbb{S}^{n} and affine charts for $\mathbb{R} \mathbb{P}^{n}$, we have

$$
\pi_{i} \circ \pi \circ \pi_{Z}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is smooth where $i=1, \cdots, n+1$ and $Z=N, S$. For the purposes of this assignment, you may just show it for $i=1$ and $Z=N$. The other cases are similar.
Show also that for every $[V] \in \mathbb{R}^{n}, \pi^{-1}([V])=\left\{\frac{V}{\|V\|}, \frac{-V}{\|V\|}\right\}$ consists of precisely two points.
Remark: One can also show that $d \pi$ is an isomorphism everywhere and so \mathbb{S}^{n} and $\mathbb{R} \mathbb{P}^{n}$ are locally diffeomorphic but not globally diffeomorphic giving us a counter example to the global inverse function theorem. In this case, \mathbb{S}^{n} is the double cover of $\mathbb{R} \mathbb{P}^{n}$ and \mathbb{S}^{n} is orientable, while $\mathbb{R} \mathbb{P}^{n}$ is not.

