MATH704 Differential Geometry Macquarie University, Semester 2 2018

Paul Bryan

Lecture One: Introduction

1 Lecture One: Introduction

- Course Outline
- What is Differential Geometry?
- Curves and Surfaces
- Intrinsic Geometry
- Curvature
- Global Geometry

Lecture One: Introduction - Course Outline

1 Lecture One: Introduction

Course Outline

- What is Differential Geometry?
- Curves and Surfaces
- Intrinsic Geometry
- Curvature
- Global Geometry

(Rough) Lecture Schedule

- Introduction: Week 1.
- Curves: Week 2.
- Surfaces: Weeks 3-5.
- Intrinsic Geometry (Riemannian Manifolds): Weeks 6-8.
- Curvature: Weeks 9-11.
- Global Geometry: Week 12.

Assessment

- \bullet 3 Assignments (roughly equally spaced) x 15% = 45 %
- Final exam = 55%

Books and Lecture Notes

- Lecture Notes
 - Differential Geometry http://pabryan.github.io/pdf/teaching/dg/dg.pdf
 - Lectures on Differential Geometry by Ben Andrews http://maths-people.anu.edu.au/~andrews/DG/
- Curves and Surfaces
 - do Carmo: Differential geometry of curves and surfaces
 - Montiel and Ros: Curves and surfaces
- Differentiable Manifolds
 - Lee: Introduction to Smooth Manifolds
 - Hitchin: Differentiable Manifolds http://people.maths.ox.ac.uk/hitchin/files/LectureNotes/ Differentiable_manifolds/manifolds2014.pdf

Riemannian Geometry (further reading)

- Do Carmo: Riemannian Geometry (a classic text that is certainly relevant today but sometimes considered a little terse. Does include material on differentiable manifolds.)
- Lee: Riemannian Manifolds: An Introduction to Curvature (very readable)
- Chavel: Riemannian Geometry: A Modern Introduction (more advanced, extensive discussion of many aspects of Riemannian Geometry)
- Petersen: Riemannian Geometry (more advanced, slightly non-standard approach definitely worth a look at some point)
- Gallot, Hulin, Lafontaine: Riemannian Geometry (more advanced, but very nice development of the formalism of Riemannian Geometry)

Other Resources

- Discussion groups?
 - http://slack.com/
 - http://piazza.com/
 - others?
- Computational Techniques/Exploration
 - https://cocalc.com/
 - I produce all figures there and do some calculations also
 - See in particular https://sagemanifolds.obspm.fr/
 - Options for computationally focused assessment
- Many possible future research projects: undergraduate research project, honours, masters, Ph.D.,...

Lecture One: Introduction - What is Differential Geometry?

Lecture One: Introduction

• Course Outline

• What is Differential Geometry?

- Curves and Surfaces
- Intrinsic Geometry
- Curvature
- Global Geometry

Calculus in Euclidean Space

Let $f : \mathbb{R} \to \mathbb{R}$.

$$\partial_x f = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Note: To differentiate we need a linear structure on the *domain* to get x + h. Let $f : \mathbb{R}^n \to \mathbb{R}, X \in \mathbb{R}^n$.

$$df_x \cdot X = \partial_t|_{t=0} f(\gamma(t))$$

where $\gamma(0) = x$ and $\gamma'(0) = X$. For example, $\gamma(t) = x + tX$. Note: We need a linear structure on \mathbb{R}^n to define

$$\gamma'(0) = \lim_{h \to 0} \frac{\gamma(h) - \gamma(0)}{h}$$

Curvilinear Calculus

• Unit sphere:
$$\mathbb{S}^2 = \{x^2 + y^2 + z^2 = 1\}$$

• Let $f: \mathbb{S}^2 \to \mathbb{R}$ be a function. How do we differentiate it? Consider the curve

$$\gamma(t) = (\cos(t), \sin(t), 0) \in \mathbb{S}^2.$$

We would like that

$$df_{(1,0,0)}(0,1,0) = \partial_t|_{t=0} f(\gamma(t)).$$

If $f = \overline{f}|_{\mathbb{S}^2}$ for $\overline{f} : \mathbb{R}^3 \to \mathbb{R}$, then $df_{(1,1,2)}(0, 1, 0) :=$

$$df_{(1,0,0)}(0,1,0) := \partial_t|_{t=0} f(\gamma(t)).$$

- Does the result depend on \bar{f} ?
- Does the result depnd on γ ?
- Do we have to use the "ambient" \mathbb{R}^3 structure?

Paul Bryan

Coordinates

Parametrise part of \mathbb{S}^2 by

$$\varphi(u, v) = (\cos u \sin v, \sin u \sin v, \cos v), \quad 0 < u < 2\pi, \quad 0 < v < \pi.$$

Then let

$$\widetilde{f}(u,v) := f \circ \varphi(u,v) = f(\cos u \sin v, \sin u \sin v, \cos v)$$

• Now $\widetilde{f}:\mathbb{R}^2 o\mathbb{R}$ and we can use Euclidean calculus!

• But does the result depend on φ ?

Example Let $f = \overline{f}|_{\mathbb{S}^2}$ be defined by

$$\bar{f}(x,y,z) = xy + z$$

Let $\gamma(t) = (\cos(t), \sin(t), 0) \in \mathbb{S}^2$.

 $df_{(1,0,0)}(0,1,0) = \partial_t|_{t=0}\bar{f}(\gamma(t)) = \partial_t|_{t=0}[\cos(t)\sin(t)+0] = 1.$

On the other hand: $\gamma(t)=arphi(t,\pi/2)$ and

$$\tilde{f}(u,v) = \underbrace{\cos(u)\sin(v)}_{x} \cdot \underbrace{\sin(u)\sin(v)}_{y} + \underbrace{\cos(v)}_{z}$$

Then

$$d ilde{f}_{(0,\pi/2)}(1,0) = \partial_t|_{t=0} [\cos(t)\sin(\pi/2) \cdot \sin(t)\sin(\pi/2) + \cos(\pi/2)] = 1.$$

Geometry of curved surfaces

- Let $\varphi: \mathbb{R}^2 \to \mathbb{S}^2 \subseteq \mathbb{R}^3$ as before.
- Coordinate curves. Fix, u_0, v_0 :

$$\gamma_{u_0}(t) = \varphi(u_0, t), \quad \gamma_{v_0}(t) = \varphi(t, v_0).$$

Coordinate vectors

$$e_u = \partial_u \varphi, \quad e_v = \partial_v \varphi.$$

• Angle and length:

$$|e_u| = \sqrt{\langle e_u, e_u
angle}, \quad |e_v| = \sqrt{\langle e_v, e_v
angle}, \quad \cos heta = rac{\langle e_u, e_v
angle}{|e_u||e_v|}.$$

Note: These are functions of u, v!

Example

 $\varphi(u, v) = (\cos u \sin v, \sin u \sin v, \cos v), \quad 0 < u < 2\pi, \quad 0 < v < \pi.$

$$e_u = (-\sin u \sin v, \cos u \sin v, 0), \quad e_v = (\cos u \cos v, \sin u \cos v, -\sin v)$$

$$|e_u| = \sqrt{(-\sin u \sin v)^2 + (\cos u \sin v)^2} = |\sin v| = \sin v.$$

$$|e_v| = \sqrt{(\cos u \cos v)^2 + (\sin u \cos v)^2 + (-\sin v)^2} = 1.$$

 $\langle e_u, e_v \rangle = 0 \Rightarrow \theta = \pi/2$. Check This!

Lecture One: Introduction - Curves and Surfaces

1 Lecture One: Introduction

- Course Outline
- What is Differential Geometry?

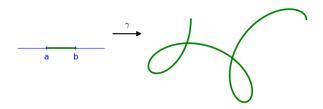
Curves and Surfaces

- Intrinsic Geometry
- Curvature
- Global Geometry

What is a curve?

Definition

A parametrised curve in the plane is a smooth function $\gamma : (a, b) \to \mathbb{R}^2$. In addition, γ is regular if $\gamma'(t) \neq 0$ for all $t \in (a, b)$.



- Regularity is very important. It allows us to transfer calculus on (a, b) to calculus on Image γ := {γ(t) : t ∈ (a, b)} ⊂ ℝ².
- Space curves are the same but in \mathbb{R}^3 .

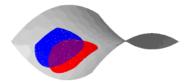
What is a surface?

Definition

A regular surface $S \subseteq \mathbb{R}^3$ is a subset of \mathbb{R}^3 such that there are *local* parametrisations $\varphi_i : U_i \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ that are smooth maps with

2 φ_i is a homeomorphism onto it's image $V_i = \varphi_i(U_i)$

 $\ \, {\bf 0} \ \, d\varphi_i|_x: \mathbb{R}^2 \to \mathbb{R}^3 \text{ is injective for each } x \in U_i.$



What is a surface

Writing $\varphi(u, v) = (x(u, v), y(u, v), z(u, v))$: $d\varphi = \begin{pmatrix} \partial_u x & \partial_v x \\ \partial_u y & \partial_v y \\ \partial_u z & \partial_v z \end{pmatrix}$

Injectivity means the tangent plane

$$\mathcal{T}_{\rho}S = \operatorname{span} \left\{ d\varphi_{(u,v)}(1,0), \quad d\varphi_{(u,v)}(0,1) \right\} = \operatorname{Image} \, d\varphi_{(u,v)}.$$

exists at the point $p = \varphi(u, v)$.

 Injectivity also allows us to transfer calculus from open sets U_i in the plane to S.

Lecture One: Introduction - Intrinsic Geometry

1

Lecture One: Introduction

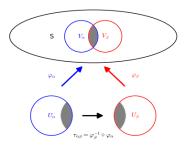
- Course Outline
- What is Differential Geometry?
- Curves and Surfaces

Intrinsic Geometry

- Curvature
- Global Geometry

Manifolds

- Forget that S is a subset of \mathbb{R}^3 and find some *intrinsic structure*.
- The key idea is that we only need the local parametrisations and *compatability*
- For each *i*, *j*, the map $\tau_{ij} = \phi_i^{-1} \circ \phi_j$ is a *diffeomorphism*. That is, differentiable with differentiable inverse.



Geometry of Riemannian metric Gauss' big idea!

• Define the (Riemannian) metric tensor

$$g = \begin{pmatrix} \langle \partial_u \varphi, \partial_u \varphi \rangle & \langle \partial_u \varphi, \partial_v \varphi \rangle \\ \langle \partial_v \varphi, \partial_u \varphi \rangle & \langle \partial_v \varphi, \partial_v \varphi \rangle \end{pmatrix}$$

• Length and angle determined by the inner-product g:

$$g(X,Y) = (X^u,X^v) \cdot g \cdot (Y^u,Y^v)^T$$

where $X = X^{u}e_{u} + X^{v}e_{v}$ and similar for Y.

Intrinsic Geometry arises by forgetting that g came from embedding into \mathbb{R}^3 and just thinking of it as a symmetric, positive definite matrix valued function!

- Length, angle, and area are determined by g alone.
- Gauss worked with surfaces and Riemann introduced the general notion of metric in *n* dimensions: Riemannian metric, line element, first fundamental form.

Paul Bryan

Intrinsic quantities

Gauss' Theorema Egregium (Remarkable Theorem):

• The Gauss Curvature is intrinsic. That is, it depends only on the geometry of the metric g and not how the surface lies in space.

- The cylinder and plane have the same "flat" geometry.
- The plane has only straight "principal" lines.
- The cylinder has one straight and one circular principal line.
- The Gauss curvature is the product of the two principal curvatures.

Lecture One: Introduction - Curvature

1 Lecture One: Introduction

- Course Outline
- What is Differential Geometry?
- Curves and Surfaces
- Intrinsic Geometry

Curvature

Global Geometry

Extrinsic Curvature

Geodesic curvature of curve:

$$\kappa = \langle \partial_{\mathbf{s}} T, \mathbf{N} \rangle = \langle \partial_{\mathbf{s}}^2 \gamma, \mathbf{N} \rangle.$$

• Second derivative with respect to arc-length.

On a surface, the curvature of the *surface* (not the curve!) is the *normal* part of the curvature.

• That is, for $\gamma:(a,b) \to S$ a curve along S:

$$\kappa_{\mathcal{S}}(\gamma) = \langle \partial_{s}^{2} \gamma, N_{\mathcal{S}} \rangle$$

where N_S is the normal of the surface.

- Straight lines have zero curvature, while the unit circle has curvature 1.
- Plane has zero curvature, cylinder has zero curvature in one direction and curvature equal to 1 in another.

Intrinsic Curvature

- Gauss curvature: $K = \kappa_1 \kappa_2$ where κ_i are the principal curvatures.
 - Plane has $\kappa_1 = \kappa_2 = 0$.
 - Cylinder has $\kappa_1 = 0, \kappa_2 = 1$.
 - Sphere has $\kappa_1 = \kappa_2 = 1$.
- Gauss showed the Gauss curvature is intrinsic! Plane and cylinder have the same geometry but the sphere does not.
- Mean Curvature: $H = \kappa_1 + \kappa_2$.
 - ► H is extrinsic (i.e. not intrinsic). See plane and cylinder.
- Riemann introduced curvature tensor to measure intrinsic curvature.
 - ► It depends only on g and not how the surface sits in space.
 - ► However, the intrinsic curvature of *S* and the extrinsic curvature of *S* are related by the *Gauss equation*.
- The Einstein-Hilbert equations in General Relativity are equations for the *intrinsic curvature*.
 - After all, this is the curvature of space-time itself and not how space-time sits in some larger ambient space!

Lecture One: Introduction - Global Geometry

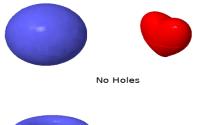
1

Lecture One: Introduction

- Course Outline
- What is Differential Geometry?
- Curves and Surfaces
- Intrinsic Geometry
- Curvature
- Global Geometry

Classification of Closed Surfaces

- Closed surfaces are classified by genus $\lambda \in \mathbb{N}$ (number of holes)
- Topological invariant



Gauss-Bonnet

$$\int_{\mathcal{S}} \mathsf{K} \mathsf{d} \sigma = 4\pi (1-\lambda)$$

The left hand side is geometric while the right hand side is topological!

- A sphere has $\int_S K d\sigma = 4\pi > 0$: "more" positive curvature on average.
- A torus has balanced positive and negative curvature: either it's flat or it has points of positive and points of negative curvature
- Higher genus surfaces: "more" negative curvature on average

Constant Sectional Curvature

- Constant sectional curvature manifolds have constant curvature!
- There are three main cases:
 - ▶ K > 0: Sphere
 - K = 0: Euclidean Space
 - K < 0: Hyperbolic Space
- These models are all *simply connected* (no holes)
- In general, there may be more complicated topology
 - But then constant curvature implies quotient of one of the three main cases
- These are called spaceforms