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(Rough) Lecture Schedule

Introduction: Week 1.

Curves: Week 2.

Surfaces: Weeks 3-5.

Intrinsic Geometry (Riemannian Manifolds): Weeks 6-8.

Curvature: Weeks 9-11.

Global Geometry: Week 12.
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Assessment

3 Assignments (roughly equally spaced) x 15% = 45 %

Final exam = 55%
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Books and Lecture Notes

Lecture Notes
I Di�erential Geometry

http://pabryan.github.io/pdf/teaching/dg/dg.pdf
I Lectures on Di�erential Geometry by Ben Andrews

http://maths-people.anu.edu.au/~andrews/DG/

Curves and Surfaces
I do Carmo: Di�erential geometry of curves and surfaces
I Montiel and Ros: Curves and surfaces

Di�erentiable Manifolds
I Lee: Introduction to Smooth Manifolds
I Hitchin: Di�erentiable Manifolds

http://people.maths.ox.ac.uk/hitchin/files/LectureNotes/

Differentiable_manifolds/manifolds2014.pdf
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Riemannian Geometry (further reading)

Do Carmo: Riemannian Geometry (a classic text that is certainly
relevant today but sometimes considered a little terse. Does include
material on di�erentiable manifolds.)

Lee: Riemannian Manifolds: An Introduction to Curvature (very
readable)

Chavel: Riemannian Geometry: A Modern Introduction (more
advanced, extensive discussion of many aspects of Riemannian
Geometry)

Petersen: Riemannian Geometry (more advanced, slightly
non-standard approach de�nitely worth a look at some point)

Gallot, Hulin, Lafontaine: Riemannian Geometry (more advanced, but
very nice development of the formalism of Riemannian Geometry)
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Other Resources

Discussion groups?
I http://slack.com/
I http://piazza.com/
I others?

Computational Techniques/Exploration
I https://cocalc.com/
I I produce all �gures there and do some calculations also
I See in particular https://sagemanifolds.obspm.fr/
I Options for computationally focused assessment

Many possible future research projects: undergraduate research
project, honours, masters, Ph.D.,. . .
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Calculus in Euclidean Space

Let f : R→ R.

∂x f = f ′(x) = lim
h→0

f (x + h)− f (x)

h

Note: To di�erentiate we need a linear structure on the domain to get
x + h.
Let f : Rn → R, X ∈ Rn.

dfx · X = ∂t |t=0f (γ(t))

where γ(0) = x and γ′(0) = X . For example, γ(t) = x + tX .
Note: We need a linear structure on Rn to de�ne

γ′(0) = lim
h→0

γ(h)− γ(0)

h
.
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Curvilinear Calculus

Unit sphere: S2 = {x2 + y2 + z2 = 1}
Let f : S2 → R be a function. How do we di�erentiate it?

Consider the curve

γ(t) = (cos(t), sin(t), 0) ∈ S2.

We would like that

df(1,0,0)(0, 1, 0) = ∂t |t=0f (γ(t)).

If f = f̄ |S2 for f̄ : R3 → R, then

df(1,0,0)(0, 1, 0) := ∂t |t=0f̄ (γ(t)).

Does the result depend on f̄ ?

Does the result depnd on γ?

Do we have to use the "ambient" R3 structure?
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Coordinates

Parametrise part of S2 by

ϕ(u, v) = (cos u sin v , sin u sin v , cos v), 0 < u < 2π, 0 < v < π.

Then let

f̃ (u, v) := f ◦ ϕ(u, v) = f (cos u sin v , sin u sin v , cos v)

Now f̃ : R2 → R and we can use Euclidean calculus!

But does the result depend on ϕ?
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Example
Let f = f̄ |S2 be de�ned by

f̄ (x , y , z) = xy + z

Let γ(t) = (cos(t), sin(t), 0) ∈ S2.

df(1,0,0)(0, 1, 0) = ∂t |t=0f̄ (γ(t)) = ∂t |t=0[cos(t) sin(t) + 0] = 1.

On the other hand: γ(t) = ϕ(t, π/2) and

f̃ (u, v) = cos(u) sin(v)︸ ︷︷ ︸
x

· sin(u) sin(v)︸ ︷︷ ︸
y

+ cos(v)︸ ︷︷ ︸
z

Then

df̃(0,π/2)(1, 0) = ∂t |t=0[cos(t) sin(π/2) · sin(t) sin(π/2) + cos(π/2)] = 1.
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Geometry of curved surfaces

Let ϕ : R2 → S2 ⊆ R3 as before.

Coordinate curves. Fix, u0, v0:

γu0(t) = ϕ(u0, t), γv0(t) = ϕ(t, v0).

Coordinate vectors
eu = ∂uϕ, ev = ∂vϕ.

Angle and length:

|eu| =
√
〈eu, eu〉, |ev | =

√
〈ev , ev 〉, cos θ =

〈eu, ev 〉
|eu||ev |

.

Note: These are functions of u, v !
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Example

ϕ(u, v) = (cos u sin v , sin u sin v , cos v), 0 < u < 2π, 0 < v < π.

eu = (− sin u sin v , cos u sin v , 0), ev = (cos u cos v , sin u cos v ,− sin v)

|eu| =
√

(− sin u sin v)2 + (cos u sin v)2 = | sin v | = sin v .

|ev | =
√

(cos u cos v)2 + (sin u cos v)2 + (− sin v)2 = 1.

〈eu, ev 〉 = 0⇒ θ = π/2. Check This!
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What is a curve?

De�nition

A parametrised curve in the plane is a smooth function γ : (a, b)→ R2. In
addition, γ is regular if γ′(t) 6= 0 for all t ∈ (a, b).

Regularity is very important. It allows us to transfer calculus on (a, b)
to calculus on Image γ := {γ(t) : t ∈ (a, b)} ⊂ R2.

Space curves are the same but in R3.
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What is a surface?

De�nition

A regular surface S ⊆ R3 is a subset of R3 such that there are local

parametrisations ϕi : Ui ⊆
open

R2 → R3 that are smooth maps with

1 S = ∪i Vi where Vi = ϕi (Ui ),

2 ϕi is a homeomorphism onto it's image Vi = ϕi (Ui )

3 dϕi |x : R2 → R3 is injective for each x ∈ Ui .
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What is a surface

Writing ϕ(u, v) = (x(u, v), y(u, v), z(u, v)):

dϕ =

∂ux ∂vx
∂uy ∂vy
∂uz ∂vz



Injectivity means the tangent plane

TpS = span{dϕ(u,v)(1, 0), dϕ(u,v)(0, 1)} = Image dϕ(u,v).

exists at the point p = ϕ(u, v).

Injectivity also allows us to transfer calculus from open sets Ui in the
plane to S .
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Manifolds

Forget that S is a subset of R3 and �nd some intrinsic structure.

The key idea is that we only need the local parametrisations and
compatability

For each i , j , the map τij = φ−1i ◦ φj is a di�eomorphism. That is,
di�erentiable with di�erentiable inverse.
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Geometry of Riemannian metric
Gauss' big idea!

De�ne the (Riemannian) metric tensor

g =

(
〈∂uϕ, ∂uϕ〉 〈∂uϕ, ∂vϕ〉
〈∂vϕ, ∂uϕ〉 〈∂vϕ, ∂vϕ〉

)
Length and angle determined by the inner-product g :

g(X ,Y ) = (X u,X v ) · g · (Y u,Y v )T

where X = X ueu + X vev and similar for Y .

Intrinsic Geometry arises by forgetting that g came from embedding into
R3 and just thinking of it as a symmetric, positive de�nite matrix valued
function!

Length, angle, and area are determined by g alone.

Gauss worked with surfaces and Riemann introduced the general
notion of metric in n dimensions: Riemannian metric, line element,
�rst fundamental form.
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Intrinsic quantities
Gauss' Theorema Egregium (Remarkable Theorem):

The Gauss Curvature is intrinsic. That is, it depends only on the
geometry of the metric g and not how the surface lies in space.

The cylinder and plane have the same "�at" geometry.

The plane has only straight "principal" lines.

The cylinder has one straight and one circular principal line.

The Gauss curvature is the product of the two principal curvatures.
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Extrinsic Curvature

Geodesic curvature of curve:

κ = 〈∂sT ,N〉 = 〈∂2s γ,N〉.

Second derivative with respect to arc-length.

On a surface, the curvature of the surface (not the curve!) is the normal

part of the curvature.

That is, for γ : (a, b)→ S a curve along S :

κS(γ) = 〈∂2s γ,NS〉

where NS is the normal of the surface.
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Example

Straight lines have zero curvature, while the unit circle has curvature 1.

Plane has zero curvature, cylinder has zero curvature in one direction
and curvature equal to 1 in another.
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Intrinsic Curvature

Gauss curvature: K = κ1κ2 where κi are the principal curvatures.
I Plane has κ1 = κ2 = 0.
I Cylinder has κ1 = 0, κ2 = 1.
I Sphere has κ1 = κ2 = 1.

Gauss showed the Gauss curvature is intrinsic! Plane and cylinder have
the same geometry but the sphere does not.

Mean Curvature: H = κ1 + κ2.
I H is extrinsic (i.e. not intrinsic). See plane and cylinder.

Riemann introduced curvature tensor to measure intrinsic curvature.
I It depends only on g and not how the surface sits in space.
I However, the intrinsic curvature of S and the extrinsic curvature of S

are related by the Gauss equation.

The Einstein-Hilbert equations in General Relativity are equations for
the intrinsic curvature.

I After all, this is the curvature of space-time itself and not how
space-time sits in some larger ambient space!
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Classi�cation of Closed Surfaces

Closed surfaces are classi�ed by genus λ ∈ N (number of holes)

Topological invariant
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Gauss-Bonnet

∫
S
Kdσ = 4π(1− λ)

The left hand side is geometric while the right hand side is topological!

A sphere has
∫
S Kdσ = 4π > 0: "more" positive curvature on average.

A torus has balanced positive and negative curvature: either it's �at or
it has points of positive and points of negative curvature

Higher genus surfaces: "more" negative curvature on average
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Constant Sectional Curvature

Constant sectional curvature manifolds have constant curvature!

There are three main cases:
I K > 0: Sphere
I K = 0: Euclidean Space
I K < 0: Hyperbolic Space

These models are all simply connected (no holes)

In general, there may be more complicated topology
I But then constant curvature implies quotient of one of the three main

cases

These are called spaceforms
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