MATH704 Differential Geometry
 Macquarie University, Semester 22018

Paul Bryan

Lecture Two: Curves

(1) Lecture Two: Curves

- Parametrised Curves
- Change of Parameters
- Arc Length
- Curvature
- Space Curves

Lecture Two: Curves - Parametrised Curves

(1) Lecture Two: Curves

- Parametrised Curves
- Change of Parameters
- Arc Length
- Curvature
- Space Curves

Regular Parametrised Curves

Definition

A smooth parametrised curve in the plane is a smooth function $\gamma:(a, b) \rightarrow \mathbb{R}^{2}$. In addition, γ is regular if $\gamma^{\prime}(t) \neq 0$ for all $t \in(a, b)$.

- Regularity is very important. It allows us to transfer calculus on (a, b) to calculus on Image $\gamma:=\{\gamma(t): t \in(a, b)\} \subset \mathbb{R}^{2}$.
- Space curves are the same but in \mathbb{R}^{3}.

Examples of Curves

Example

$$
\begin{gathered}
\gamma_{1}(t)=(\cos (t), \sin (t)),-\pi<t<\pi . \\
\gamma_{2}(t)=\left(\cos \left(t^{2}\right), \sin \left(t^{2}\right),-\sqrt{\pi}<t<\sqrt{\pi} .\right.
\end{gathered}
$$

Notice that $\operatorname{Img}\left(\gamma_{1}\right):=\left\{\gamma_{1}(t):-\pi<t<\pi\right\}=\operatorname{Img}\left(\gamma_{2}\right)$ but $\gamma_{1} \neq \gamma_{2}$. The first is regular, but $\gamma_{2}^{\prime}(0)=0$ so γ_{2} is not regular.

Example

$$
\gamma(t)=(t,|t|), t \in \mathbb{R} .
$$

This time γ is not differentiable at $t=0$ so is not even a smooth parametrised curve.

Examples of Curves

Example

$$
\gamma(t)=\left(t^{3}, t^{2}\right), \quad t \in \mathbb{R} .
$$

We have $\operatorname{lmg}(\gamma)=\left\{y=x^{2 / 3}\right\}$ has a cusp at $t=0$. This time, there is no regular parametrisation of $\operatorname{lmg}(\gamma)$! See the implicit function theorem.

Example

$$
\gamma(t)=\left(t^{3}-4 t, t^{2}-4\right) .
$$

Here γ is regular, but it is not one-to-one. That is, it crosses itself.
Example

$$
\gamma(t)=(\cos (t), \sin (t)) .
$$

Here γ is one-to-one on $(0,2 \pi)$ but not on any larger interval. However, $\gamma^{(k)}(0)=\gamma^{(k)}(2 \pi)$ so that γ smoothly closes up to give a closed curve.
Any smooth periodic function satisfies this property.

Lecture Two: Curves - Change of Parameters

(1) Lecture Two: Curves

- Parametrised Curves
- Change of Parameters
- Arc Length
- Curvature
- Space Curves

Change of Parameters

- Let $\gamma:(a, b) \rightarrow \mathbb{R}^{2}$ and $\sigma:(c, d) \rightarrow \mathbb{R}^{2}$ be regular parametrisations with $C:=\operatorname{Img} \gamma=\operatorname{Img} \sigma$.
- Assume for the moment that γ and σ are one-to-one so that $\gamma^{-1}: C \rightarrow(a, b)$ is defined and $\sigma^{-1}: C \rightarrow(c, d)$ is defined.
- We call $\varphi=\sigma^{-1} \circ \gamma:(a, b) \rightarrow(c, d)$ the change of parameters.

Lemma

The function φ is a diffeomorphism. That is, it is a smooth function with smooth inverse.

Differential of Change of Parameters

Proof.

- Let $T=\gamma^{\prime} /\left|\gamma^{\prime}\right|$ be the unit tangent (regularity!) and $N=J(T)$ be the unit normal with J rotation by $\pi / 2$.
- Define the function

$$
\Gamma(t, u)=\gamma(t)+u N(t)
$$

- The differential is the matrix

$$
d \Gamma=\left(\gamma^{\prime}+u N^{\prime} \quad N\right)
$$

Note here we have two columns!

- Now observe that $\gamma(t)=\Gamma(t, u=0)$ and the differential is non-singular:

$$
d \Gamma(t, u=0)=\left(\left|\gamma^{\prime}\right| T \quad N\right)
$$

Proof of Change of Parameters Lemma

Proof.

- By the inverse function theorem (see next lecture!), for each t, there is an open set U containing $(t, 0)$ and an open set V in \mathbb{R}^{2} containing $\gamma(t)$ such that

$$
\Gamma \mid U: U \underset{\simeq}{\longrightarrow} V
$$

is a diffeomorphism with $\gamma(t)=\Gamma(t, u=0)$.

- Likewise applying the same argument to σ we have

$$
\Sigma \mid W: W \rightarrow Z
$$

is a diffeomorphism with $\sigma(s)=\Sigma(s, v=0)$.

- But now

$$
\sigma^{-1} \circ \gamma=\Sigma^{-1}|c \circ \Gamma|_{u=0}
$$

is differentiable with differentiable inverse $\Gamma^{-1}|c \circ \Sigma|_{s=0}$.

Straightening

- The use of the map Γ is known as straightening the curve γ because it identifies an open set around a point of C with an open set of \mathbb{R}^{2} such that C is identified with the horizontal axis.

Inverse Function Theorem

- The key ingredient was the inverse function theorem. We will investigate this more closely next week.

For now, as an illustration, note that if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f^{\prime}\left(x_{0}\right) \neq 0$, then f is monotone on an interval $\left(x_{0}-\epsilon, x_{0}+\epsilon\right)$ and hence invertible on that interval. Moreover, the inverse is differentiable. This is precisely the 1-dimensional inverse function theorem.
Notice that if $f: U \subseteq \mathbb{R}^{n} \rightarrow V \subseteq \mathbb{R}^{n}$ is a diffeomorphism, then since $f \circ f^{-1}=\mathrm{ld}$, by the chain rule

$$
d f \circ d f^{-1}=d\left(f \circ f^{-1}\right)=d \mathrm{Id}=\mathrm{Id}
$$

and hence $d f$ is non-singular. The inverse function theorem is a local converse.
For example, the function $f(x)=x^{3}$ has $f^{\prime}(0)=0$ so cannot be smoothly invertible near $x=0$. However, f^{-1} does exist: $f^{-1}(y)=y^{1 / 3}$ which is not differentiable at $y=f(0)=0$.

Lecture Two: Curves - Arc Length

(1) Lecture Two: Curves

- Parametrised Curves
- Change of Parameters
- Arc Length
- Curvature
- Space Curves

Arc Length Parameter

Definition

The arc length parameter $s(t)=\int_{a}^{t}\left|\gamma^{\prime}(\tau)\right| d \tau$.

Lemma

The arc length parameter $s(t)$ is smoothly invertible so we may write $t=t(s)$. Then the parametrisation $\bar{\gamma}(s)=\gamma(t(s))$ satisfies $\left|\bar{\gamma}^{\prime}\right| \equiv 1$.

Proof.

(1) $s^{\prime}(t)=\left|\gamma^{\prime}(t)\right| \neq 0$ hence s is smoothly invertible.
(2)

$$
\partial_{s} \bar{\gamma}(s)=\gamma^{\prime}(t(s)) \partial_{s} t(s)=\gamma^{\prime}(t(s)) \frac{1}{s^{\prime}(t(s))}=\frac{\gamma^{\prime}(t(s))}{\left|\gamma^{\prime}(t(s))\right|}
$$

Therefore $\partial_{s} \bar{\gamma}$ is unit length as required.

Arc Length of Curves

Definition

For $p, \boldsymbol{q} \in[a, b]$, the arc length along γ between $\gamma(p)$ and $\gamma(q)$ is

$$
\ell(p, q)=\int_{p}^{q}\left|\gamma^{\prime}\right| d t
$$

The total length of γ is

$$
L(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}\right| d t=s(b)
$$

In the arc length parametrisation $s \in(0, L(\gamma))$,

$$
\ell\left(s_{1}, s_{2}\right)=\int_{s_{1}}^{s_{2}}\left|\gamma^{\prime}\right| d s=\int_{s_{1}}^{s_{2}} d s=\left|s_{2}-s_{1}\right|
$$

Exercise!: Invariance under change of parameters, $\varphi:(a, b) \rightarrow(c, d)$:

$$
\int_{c}^{d}\left|\gamma^{\prime}(t)\right| d t=\int_{\partial}^{b}\left|(\gamma \circ \varphi)^{\prime}(u)\right| d u
$$

Length as a Riemann Sum

- Let $a=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=b$ be a partition of $[a, b]$.
- Then for N large, so that for example $t_{i+1}-t_{i}=\Delta t:=(b-a) / N$ is small

$$
I\left(t_{i}, t_{i+1}\right) \simeq\left|\gamma^{\prime}\left(t_{i}\right)\right| \Delta t
$$

- Then

$$
\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t=\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left|\gamma^{\prime}\left(t_{i}\right)\right| \Delta t
$$

- That is, the arc length of γ is obtained by approximating γ by short straight lines and adding up their lengths.

Polygonal Approximation

- Exercise: Let $L_{i}=\left|\gamma\left(t_{i+1}\right)-\gamma\left(t_{i}\right)\right|$ be the length of the line segment joining $\gamma\left(t_{i+1}\right)$ to $\gamma\left(t_{i}\right)$. Then

$$
\int_{a}^{b}\left|\gamma^{\prime}\right| d t=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} L_{i}
$$

- Challenge Exercise

$$
\int_{a}^{b}\left|\gamma^{\prime}\right| d t=\sup \sum_{i} L_{i}
$$

where the supremum is taken over all partitions of $[a, b]$.

Lecture Two: Curves - Curvature

(1) Lecture Two: Curves

- Parametrised Curves
- Change of Parameters
- Arc Length
- Curvature
- Space Curves

Geodesic Curvature

- Parametrise by arc length
- Unit tangent: $T=\gamma^{\prime}$ (regularity!)
- Unit normal: $N=J(T)$ where J is rotation by $\pi / 2$.
- Either clockwise or counter-clockwise is fine giving $\langle T, N\rangle=0$. But we must make a single consistent choice to ensure N is continuous.

Since $\langle T, T\rangle \equiv 1$ we have

$$
0=\partial_{s}\langle T, T\rangle=2\left\langle\partial_{s} T, T\right\rangle
$$

That is

$$
\partial_{s} T=\kappa N
$$

for some function κ.

Definition

The geodesic curvature (with respect to N) of γ is $\kappa=\left\langle\partial_{s} T, N\right\rangle$.

Frenet-Serret Frame

- For each point $\gamma(t),\{T(t), N(t)\}$ is an orthonormal basis for \mathbb{R}^{2}.
- We think of $T(t), N(t)$ as vectors based at $\gamma(t)$. As t varies, the base point varies. For this reason, $\{T(t), N(t)\}$ is known as a Moving Frame.
- For curves, this frame is also called the Frenet-Serret Frame.

Lemma (Frenet-Serret Equations)

$$
\partial_{s}\binom{T}{N}=\left(\begin{array}{cc}
0 & \kappa \\
-\kappa & 0
\end{array}\right)\binom{T}{N}
$$

- Exercise: Differentiate $\langle T, N\rangle=0$ to prove the lemma.

Change of Ambient Orientation

Make the change $\bar{N}(s)=-N(s)$. This changes the orientation $T \rightarrow N$ of \mathbb{R}^{2} to the orientation of $\mathbb{R}^{2} T \rightarrow \bar{N}=-N$. That is, it swaps clockwise and counter-clockwise.
The curvature changes by

$$
\bar{\kappa}=\left\langle\partial_{s} T, \bar{N}\right\rangle=-\left\langle\partial_{s} T, N\right\rangle=-\kappa
$$

The sign of the geodesic curvature is defined only up to a choice of orientation of \mathbb{R}^{2}

Change of Curve Orientation

Suppose γ is parametrised by arc-length on (a, b). Reverse direction and parametrise by

$$
\mu(s)=\gamma(-s), \quad s \in(-b,-a)
$$

Then

$$
T_{\mu}(s)=\mu^{\prime}(s)=-\gamma^{\prime}(-s)=-T_{\gamma}(-s)
$$

and

$$
N_{\mu}(s)=J\left(T_{\mu}(s)\right)=-J\left(T_{\gamma}(-s)\right)=-N_{\gamma}(s)
$$

Then

$$
\kappa_{\mu}(s)=\left\langle\partial_{s} T_{\mu}(s), N_{\mu}(s)\right\rangle=\left\langle\partial_{s}\left[-T_{\gamma}(-s)\right],-N_{\gamma}(-s)\right\rangle=-\kappa_{\gamma}(-s)
$$

Reversing the orientation of γ (but not of \mathbb{R}^{2}) changes the sign of κ also!

Geometric Interpretation

- The curvature measures the deviation of γ from the tangent line $u \mapsto \gamma(s)+u T(s)$.
- Exercise: Show that $\kappa \equiv 0$ if and only if $\gamma(t)=p+t v$ is a straight line.
- Exercise: Show that $\kappa \equiv 1 / r$ for some $r>0$ if and only if $\gamma(s)=r\left(\cos \left(s+s_{0}\right), \sin \left(s+s_{0}\right)\right)+p$ is a circle of radius r centred on p.
- Hint: It might be helpful to think about the next exercise first.
- Quadratic Approximation:

$$
\begin{aligned}
\gamma(s) & =\gamma\left(s_{0}\right)+\left(s-s_{0}\right) \gamma^{\prime}\left(s_{0}\right)+\frac{1}{2}\left(s-s_{0}\right)^{2} \gamma^{\prime \prime}\left(s_{0}\right)+\cdots \\
& =\gamma\left(s_{0}\right)+\left(s-s_{0}\right) T\left(s_{0}\right)+\frac{1}{2}\left(s-s_{0}\right)^{2} \kappa\left(s_{0}\right) N\left(s_{0}\right)+\cdots
\end{aligned}
$$

The Curvature Determines the Curve

- Exercise: Show that given any smooth function κ, there exists a curve γ parametrised by arc-length with curvature κ. In fact, all such curves are of the form

$$
\gamma(s)=\left(\int \cos \theta(s) d s, \int \sin \theta(s)\right)+p
$$

where $p \in \mathbb{R}^{2}$ and

$$
\theta(s)=\int \kappa(s) d s+\theta_{0}
$$

with $\theta_{0} \in \mathbb{R}$.

- Hint: Use the fact that $T=\gamma^{\prime}$ has unit length hence has the form $T=(\cos \theta(s), \sin \theta(s))$ for some smooth function θ (the implicit function theorem guarantees smoothness). Now determine N in terms of T and differentiate T to obtain an equation for θ in terms of κ. Then finally, integrate T to obtain γ.
- Exercise: Conclude that all arc-length parametrisations of the unit circle centered on the origin are of the form

$$
\gamma(s)=\left(\cos \left(s+s_{0}\right), \sin \left(s+s_{0}\right)\right)
$$

Invariance Under Rigid Motion

Definition

A rigid motion of the plane is any affine transformation

$$
T(x)=A \cdot x+b, \quad x \in \mathbb{R}^{2}
$$

$b \in \mathbb{R}^{2}$ and where A is an orthogonal matrix. That is

$$
\langle A x, A y\rangle=\langle x, y\rangle \quad \forall x, y \in \mathbb{R}^{2} .
$$

- Exercise: Let γ be a regular parametrised curve and define a new regular parametrised curve $\mu(s)=T(\gamma(s))=A \cdot \gamma(s)+b$.
(1) Show that $T_{\mu}=A \cdot T_{\gamma}$ and $N_{\mu}= \pm A \cdot N_{\gamma}$ (the sign depends on whether A preserves or reverses orientation).
(2) Show that if γ is parametrised by arc-length, then so is μ.
(3) Show that $\kappa_{\mu}(s)=\kappa_{\gamma}(s)$.

We say that κ is invariant under rigid motion.

Lecture Two: Curves - Space Curves

(1) Lecture Two: Curves

- Parametrised Curves
- Change of Parameters
- Arc Length
- Curvature
- Space Curves

Normal and Binormal Vectors

A regular, parametrised space curve is a smooth map $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ with $\gamma^{\prime} \neq 0$.
Unlike for plane curves, we cannot a-priori define a normal vector: Putting $T=\gamma^{\prime} /\left|\gamma^{\prime}\right|$,

$$
T^{\perp}(t)=\left\{V \in \mathbb{R}^{2}:\langle T(t), V\rangle=0\right\}
$$

is a two-dimensional plane passing through $\gamma(t)$.
As with plane curves however we may still parametrise by arc-length and then

$$
1 \equiv\langle T, T\rangle \Rightarrow \gamma^{\prime \prime} \perp T
$$

Therefore, if $\gamma^{\prime \prime} \neq 0$, we may choose a unit normal vector N in T^{\perp} and a binormal vector $B \in T^{\perp}$ to obtain an oriented basis $\{T, N, B\}$ of \mathbb{R}^{3} :

$$
T(s)=\gamma^{\prime}, \quad N(s)=\frac{\gamma^{\prime \prime}}{\left|\gamma^{\prime \prime}\right|}, \quad B(s)=T(s) \times N(s) .
$$

Curvature and Torsion

We define the curvature,

$$
\kappa(s)=\left|\gamma^{\prime \prime}(s)\right| .
$$

For space curves, we will restrict to the curves with $\kappa>0$ so that $N=\frac{\gamma^{\prime}}{\kappa}$ is defined.
Here we cannot give a sign to the curvature since we cannot a-priori choose a normal vectors.
Since B is unit length, $\partial_{s} B \perp B$. Moreover

$$
\partial_{s} B=\partial_{s}(T \times N)=T^{\prime} \times N+T \times N^{\prime}=T \times N^{\prime} \perp T
$$

since $T^{\prime}=\kappa N \Rightarrow T^{\prime} \times N=0$.
Therefore we define the torsion, τ by

$$
B^{\prime}=-\tau N .
$$

- Exercise: Since N is unit length, $\partial_{s} N \perp N$ and

$$
\partial_{s} N=-\kappa T+\tau B
$$

Frenet-Serret Frame

Now we have a three dimensional frame $\{T, N, B\}$.
The Osculating Plane is the plane spanned by T and N.
The Frenet-Serret equations are

$$
\partial_{s}\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B
\end{array}\right)
$$

- κ measures the deviation of γ from the tangent line in the osculating plane.
- τ measures the twisting of γ away from the osculating plane.
- A space curve γ with $\kappa>0$ lies in a plane if and only if $\tau \equiv 0$.
- Given $\kappa>0$ and τ, there exists a unique (up to rigid motion) curve with the given curvature and torsion.

