MATH704 Differential Geometry
 Macquarie University, Semester 22018

Paul Bryan

Lecture Three: Curves

(1) Lecture Three: Curves

- Curvature
- Space Curves
- Global Results

Lecture Three: Curves - Curvature

(1) Lecture Three: Curves

- Curvature
- Space Curves
- Global Results

Geometric Interpretation

- The curvature measures the deviation of γ from the tangent line $u \mapsto \gamma(s)+u T(s)$.
- Exercise: Show that $\kappa \equiv 0$ if and only if $\gamma(t)=p+t v$ is a straight line.
- Exercise: Show that $\kappa \equiv 1 / r$ for some $r>0$ if and only if $\gamma(s)=r\left(\cos \left(s+s_{0}\right), \sin \left(s+s_{0}\right)\right)+p$ is a circle of radius r centred on p.
- Hint: It might be helpful to think about the next exercise first.
- Quadratic Approximation:

$$
\begin{aligned}
\gamma(s) & =\gamma\left(s_{0}\right)+\left(s-s_{0}\right) \gamma^{\prime}\left(s_{0}\right)+\frac{1}{2}\left(s-s_{0}\right)^{2} \gamma^{\prime \prime}\left(s_{0}\right)+\cdots \\
& =\gamma\left(s_{0}\right)+\left(s-s_{0}\right) T\left(s_{0}\right)+\frac{1}{2}\left(s-s_{0}\right)^{2} \kappa\left(s_{0}\right) N\left(s_{0}\right)+\cdots
\end{aligned}
$$

The Curvature Determines the Curve

- Exercise: Show that given any smooth function κ, there exists a curve γ parametrised by arc-length with curvature κ. In fact, all such curves are of the form

$$
\gamma(s)=\left(\int \cos \theta(s) d s, \int \sin \theta(s)\right)+p
$$

where $p \in \mathbb{R}^{2}$ and

$$
\theta(s)=\int \kappa(s) d s+\theta_{0}
$$

with $\theta_{0} \in \mathbb{R}$.

- Hint: Use the fact that $T=\gamma^{\prime}$ has unit length hence has the form $T=(\cos \theta(s), \sin \theta(s))$ for some smooth function θ (the implicit function theorem guarantees smoothness). Now determine N in terms of T and differentiate T to obtain an equation for θ in terms of κ. Then finally, integrate T to obtain γ.
- Exercise: Conclude that all arc-length parametrisations of the unit circle centered on the origin are of the form

$$
\gamma(s)=\left(\cos \left(s+s_{0}\right), \sin \left(s+s_{0}\right)\right)
$$

Invariance Under Rigid Motion

Definition

A rigid motion of the plane is any affine transformation

$$
T(x)=A \cdot x+b, \quad x \in \mathbb{R}^{2}
$$

$b \in \mathbb{R}^{2}$ and where A is an orthogonal matrix. That is

$$
\langle A x, A y\rangle=\langle x, y\rangle \quad \forall x, y \in \mathbb{R}^{2} .
$$

- Exercise: Let γ be a regular parametrised curve and define a new regular parametrised curve $\mu(s)=T(\gamma(s))=A \cdot \gamma(s)+b$.
(1) Show that $T_{\mu}=A \cdot T_{\gamma}$ and $N_{\mu}= \pm A \cdot N_{\gamma}$ (the sign depends on whether A preserves or reverses orientation).
(2) Show that if γ is parametrised by arc-length, then so is μ.
(3) Show that $\kappa_{\mu}(s)=\kappa_{\gamma}(s)$.

We say that κ is invariant under rigid motion.

Lecture Three: Curves - Space Curves

(1) Lecture Three: Curves

- Curvature
- Space Curves
- Global Results

Normal and Binormal Vectors

A regular, parametrised space curve is a smooth map $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ with $\gamma^{\prime} \neq 0$.
Unlike for plane curves, we cannot a-priori define a normal vector: Putting $T=\gamma^{\prime} /\left|\gamma^{\prime}\right|$,

$$
T^{\perp}(t)=\left\{V \in \mathbb{R}^{2}:\langle T(t), V\rangle=0\right\}
$$

is a two-dimensional plane passing through $\gamma(t)$.
As with plane curves however we may still parametrise by arc-length and then

$$
1 \equiv\langle T, T\rangle \Rightarrow \gamma^{\prime \prime} \perp T
$$

Therefore, if $\gamma^{\prime \prime} \neq 0$, we may choose a unit normal vector N in T^{\perp} and a binormal vector $B \in T^{\perp}$ to obtain an oriented basis $\{T, N, B\}$ of \mathbb{R}^{3} :

$$
T(s)=\gamma^{\prime}, \quad N(s)=\frac{\gamma^{\prime \prime}}{\left|\gamma^{\prime \prime}\right|}, \quad B(s)=T(s) \times N(s)
$$

Curvature and Torsion

We define the curvature,

$$
\kappa(s)=\left|\gamma^{\prime \prime}(s)\right| .
$$

For space curves, we will restrict to the curves with $\kappa>0$ so that $N=\frac{\gamma^{\prime}}{\kappa}$ is defined.
Here we cannot give a sign to the curvature since we cannot a-priori choose a normal vectors.
Since B is unit length, $\partial_{s} B \perp B$. Moreover

$$
\partial_{s} B=\partial_{s}(T \times N)=T^{\prime} \times N+T \times N^{\prime}=T \times N^{\prime} \perp T
$$

since $T^{\prime}=\kappa N \Rightarrow T^{\prime} \times N=0$.
Therefore we define the torsion, τ by

$$
B^{\prime}=-\tau N .
$$

- Exercise: Since N is unit length, $\partial_{s} N \perp N$ and

$$
\partial_{s} N=-\kappa T+\tau B
$$

Frenet-Serret Frame

Now we have a three dimensional frame $\{T, N, B\}$.
The Osculating Plane is the plane spanned by T and N.
The Frenet-Serret equations are

$$
\partial_{s}\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B
\end{array}\right)
$$

- κ measures the deviation of γ from the tangent line in the osculating plane.
- τ measures the twisting of γ away from the osculating plane.
- A space curve γ with $\kappa>0$ lies in a plane if and only if $\tau \equiv 0$.
- Given $\kappa>0$ and τ, there exists a unique (up to rigid motion) curve with the given curvature and torsion.

Lecture Three: Curves - Global Results

(1) Lecture Three: Curves

- Curvature
- Space Curves
- Global Results

Jordan Curve Theorem

Definition

Let $\gamma:(a, b) \rightarrow \mathbb{R}^{2}$ be a smooth curve. We say γ is simple if γ is one-to-one. We say γ is closed if $\gamma(a)=\gamma(b)$ and likewise $\gamma^{(k)}(a)=\gamma^{(k)}(b)$ for all $k \in \mathbb{N}$.

Theorem (Jordan Curve Theorem)

Let γ be a simple, closed curve. Then γ divides the plane into two regions

- one bounded and one unbounded. That is, there exists two disjoint, connected open sets Ω and Λ with $\partial \Omega=\partial \Lambda=\gamma$ such that
(1) There exists an $R>0$ such that $\Omega \subseteq B_{R}(0)$, and
(2) $\mathbb{R}^{2}=\Omega \sqcup C \sqcup \wedge$ where $C=\operatorname{lmg}(\gamma)$ and the union is a disjoint union.

Remark

Necessarily, Λ is unbounded in the sense that Λ is not contained in any $B_{R}(0)$.

Proofs of the Jordan Curve Theorem

- The hard part of the theorem is that it applies to continuous curves.
- Thus γ could be for example nowhere differentiable such as a fractal.
- A proof in the piecewise smooth case (i.e. where γ is continuous and smooth away from at most finitely many points) can be found here: The Jordan Curve Theorem for Piecewise Smooth Curves, R. N. Pederson, The American Mathematical Monthly Vol. 76, No. 6 (Jun. - Jul., 1969), pp. 605-610
The idea is that γ is locally two-sided: the tangent line divides the plane into the two sides. Thus one normal points inward while the other points outward.
- A reasonably elementary general proof may be found here: The Jordan Curve Theorem Via the Brouwer Fixed Point Theorem, Ryuji Maehara, The American Mathematical Monthly, Vol. 91, No. 10 (Dec., 1984), pp. 641-643
- More generally the theorem holds for embedded spheres $\mathbb{S}^{n} \hookrightarrow \mathbb{R}^{n+1}$.
- See https://en.wikipedia.org/wiki/Jordan_curve_theorem for more details.

Isoperimetric Inequality

- Let γ be a simple, closed curve and Ω the bounded region enclosed by γ.

Theorem (Isoperimetric Inequality)
We have

$$
\frac{L^{2}}{A} \geq 4 \pi
$$

where L is the length of γ and A is the enclosed area, i.e. the area of Ω. Moreover, equality occurs if and only if γ is a (round) circle.

- The circle encloses the most area for a given perimeter. Equivalently, the circle has the least perimeter for a given area.
- Look up "Queen Dido"!

Isoperimetric Inequality

Proof.

Recall the Divergence Theorem:

$$
\int_{\Omega} \operatorname{div} X d x d y=\int_{\gamma}\langle X, N\rangle d s
$$

Let $X(x, y)=(x, y)$ so that $\operatorname{div} X=\partial_{x} x+\partial_{y} y=2$.
Then

$$
\begin{aligned}
2 A & =\int_{\gamma}\langle X, N\rangle d s \leq \int_{\gamma}|X| d s \quad \text { (Pointwise Cauchy Schwartz) } \\
& \leq\left(\int|X|^{2} d s\right)^{1 / 2}\left(\int 1^{2} d s\right)^{1 / 2} \quad\left(L^{2}\right. \text { Cauchy Schwartz) } \\
& =\left(\int|X|^{2} d s\right)^{1 / 2} L^{1 / 2}
\end{aligned}
$$

Isoperimetric Inequality

Proof.

Write $\gamma(s)=(x(s), y(s))$ and translate:

$$
(x(s), y(s)) \mapsto(x(s)+u, y(s)+v)
$$

Notice that:
(1) L and A are invariant under translation.
(2) $\lim _{u \rightarrow \pm \infty} x(s)+u= \pm \infty$ uniformly in s. Therefore there exists a u such that $\int x(s) d s=0$. Likewise, there is a v such that $\int y(s) d s=0$.

Then since x is periodic and $\int x d s=0$, we may apply Wirtinger's Inequality:

$$
\int_{0}^{L}\left(x^{\prime}\right)^{2} d s \geq \frac{4 \pi^{2}}{L^{2}} \int_{0}^{L} x^{2} d s
$$

and likewise for y.

Isoperimetric Inequality

Proof.

Thus

$$
\begin{aligned}
2 A & \leq L^{1 / 2}\left(\int|X|^{2} d s\right)^{1 / 2}=L^{1 / 2}\left(\int x^{2}+y^{2} d s\right)^{1 / 2} \\
& \leq L^{1 / 2}\left(\frac{L^{2}}{4 \pi^{2}} \int\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2} d s\right)^{1 / 2} \quad(\text { Wirtinger }) \\
& =L^{1 / 2} \frac{L}{2 \pi} L^{1 / 2} \text { arc length: }\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=1 \\
& =\frac{L^{2}}{2 \pi} .
\end{aligned}
$$

Theorem of Turning Tangents

Theorem (Turning Tangents)
Let γ be a simple, closed curve. Then

$$
\int_{\gamma} \kappa d s= \pm 2 \pi
$$

Proof.

Since $|T| \equiv 1$ we may write

$$
T(s)=(\cos \theta(s), \sin \theta(s))
$$

By the implicit function theorem, the function θ is smooth. By the chain rule and the Frenet-Serret formula

$$
\theta^{\prime}(-\sin \theta, \cos \theta)=\partial_{s} T=\kappa N
$$

Theorem of Turning Tangents

Proof.

But $N=(-\sin \theta, \cos \theta)$ and hence $\theta^{\prime}=\kappa$.
Then

$$
\int_{0}^{L} \kappa d s=\int_{0}^{L} \theta^{\prime}(s) d s=\theta(L)-\theta(0)
$$

Since γ is closed, $(\cos \theta(L), \sin \theta(L))=(\cos \theta(0), \sin \theta(0))$. Therefore

$$
\int_{0}^{L} \kappa d s=\theta(L)-\theta(0)=2 \pi n
$$

for some integer $n \in \mathbb{Z}$.
The integer n is known as the winding number of γ. A topological result says for a simple closed curve $n= \pm 1$ with the sign depending on the orientation.

