MATH704 Differential Geometry
 Macquarie University, Semester 22018

Paul Bryan

Lecture Four: Multivariable Calculus Refresher

(1) Lecture Four: Multivariable Calculus Refresher

- Topology on \mathbb{R}^{n}
- Limits and continuity
- Differentiability
- Inverse and Implicit Function Theorems

Lecture Four: Multivariable Calculus Refresher - Topology on \mathbb{R}^{n}
(1) Lecture Four: Multivariable Calculus Refresher

- Topology on \mathbb{R}^{n}
- Limits and continuity
- Differentiability
- Inverse and Implicit Function Theorems

Open and closed balls and spheres

Definition

Given $r>0$ and $x \in \mathbb{R}^{n}$, the open ball of radius r and centre x is the set

$$
B_{r}(x)=\left\{y \in \mathbb{R}^{n}:|x-y|<r\right\} .
$$

The closed ball of radius r and centre x is the set

$$
\bar{B}_{r}(x)=\left\{y \in \mathbb{R}^{n}:|x-y| \leq r\right\} .
$$

The sphere of radius r and centre x is the set

$$
\mathbb{S}_{r}(x)=\left\{y \in \mathbb{R}^{n}:|x-y|=r\right\} .
$$

Distance function

Recall the distance $|x-y|$ is defined to be

$$
|x-y|=\sqrt{\left(x^{1}-y^{1}\right)^{2}+\cdots+\left(x^{n}-y^{n}\right)^{2}}
$$

where $x=\left(x^{1}, \ldots, x^{n}\right)$ and $y=\left(y^{1}, \ldots, y^{n}\right)$.

- The open ball is the set of points of distance to x strictly less than r.
- The closed ball is the set of points of distance to x less than or equal to r.
- The sphere is the set of points of distance to x equal to r.

It is sometimes said that analysis is simply applications of the triangle inequality:

$$
|x-y| \leq|x-z|+|z-y|
$$

Open and closed sets

Definition

A set $U \subset \mathbb{R}^{n}$ is said to be open provided for every $x \in U$, there exists an $r=r(x)$ such that

$$
B_{r}(x) \subseteq U
$$

A set C is closed if it's complement,

$$
\mathbb{R}^{n} \backslash C:=\left\{y \in \mathbb{R}^{n}: y \notin C\right\}
$$

is open.

- By this definition, open balls are open, closed balls are closed and spheres are closed.
- Given any point of an open set, we can always move/uniformly/a little in any direction and remain in the open set.

Bounded and compact sets

Definition

A set $S \subseteq \mathbb{R}^{n}$ is bounded if there exists an $x \in \mathbb{R}^{n}$ and an $r>0$ such that $S \subseteq B_{r}(x)$.
A set $K \subseteq \mathbb{R}^{n}$ is compact if it is closed and bounded.

- A set $S \subseteq \mathbb{R}^{n}$ is bounded if and only if, for every $x \in \mathbb{R}^{n}$ there exists an $r=r(x)$ such that $S \subseteq B_{r}(x)$. This follows by the triangle inequality.
- A set $K \subseteq \mathbb{R}^{n}$ is compact if and only if for every open cover $\left\{U_{\alpha}\right\}$, there exists a finite subcover.
- An open cover is a collection of open sets $\left\{U_{\alpha}\right\}$ such that $K \subseteq \cup_{\alpha} U_{\alpha}$.
- A finite subcover is a finite number of sets $U_{\alpha_{1}}, \cdots, U_{\alpha_{N}}$ from the collection such that $K \subseteq \cup_{i=1}^{N} U_{\alpha_{i}}$.
- This equivalent condition of compactness is the general definition for topological spaces but is equivalent in the case of \mathbb{R}^{n}.

Lecture Four: Multivariable Calculus Refresher - Limits and continuity
(1) Lecture Four: Multivariable Calculus Refresher

- Topology on \mathbb{R}^{n}
- Limits and continuity
- Differentiability
- Inverse and Implicit Function Theorems

Limits

Definition

A sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}^{n}$ converges to $x \in \mathbb{R}^{n}$ if for every $\epsilon>0$, there exists a $N \in \mathbb{N}$ such that $\left(x_{n}\right)_{n \geq N} \subseteq B_{\epsilon}(x)$. We write $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition

The sequence $\left(x_{n}\right)$ is Cauchy if for every $\epsilon>0$, there exists a $N \in \mathbb{N}$ such that $\left(x_{m}\right)_{m \geq N} \subseteq B_{\epsilon}\left(x_{n}\right)$ for every $n \geq N$.

Remark

The condition for convergence to x says that $\left|x-x_{n}\right|<\epsilon$ for $n \geq N$. The condition to be a Cauchy sequence says that $\left|x_{n}-x_{m}\right|<\epsilon$ for $m, n \geq N$.

Continuity

Here are some equivalent definitions of continuity.

Definition (Sequential definition)

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $x \in \mathbb{R}^{n}$ if for every sequence $\left(x_{n}\right)$ with $\lim _{n \rightarrow \infty}=x$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$.

Definition ($\epsilon-\delta$ definition)
Write

$$
\lim _{x \rightarrow x_{0}} f(x)=y
$$

provided for every $\epsilon>0$, there exists a $\delta>0$ such that $f\left(B_{\delta}\left(x_{0}\right)\right) \subseteq B_{\epsilon}(y)$. Then f is continuous at x_{0} if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Definition (Topological definition)

The function f is continuous (at every x_{0}) if $f^{-1}(V)$ is an open set for every open set $V \subseteq \mathbb{R}^{m}$.

Continuity

- The first definition requires that $f\left(x_{n}\right) \rightarrow f(x)$ for every sequence.
- The condition in the second definition that $f\left(B_{\delta}\left(x_{0}\right)\right) \subseteq B_{\epsilon}(y)$ is the same thing as $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ whenever $\left|x-x_{0}\right|<\delta$.
- The second definition says that given any tolerance $\epsilon>0$, there is an adjustment $\delta>0$ so that provided we are sufficiently close to x_{0} (i.e. $\left.\left|x-x_{0}\right|<\delta\right)$, then $f(x)$ is within the desired tolerance of $f\left(x_{0}\right)$ (i.e. $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.
- The equivalence of the first and second definitions is a standard exercise in analysis using the completeness of the real numbers \mathbb{R}.
- The final definition is the general topological definition.
- The equivalence of the topological and $\epsilon-\delta$ definitions follows by writing $U=\cup_{y \in U} B_{r(y)}(y)$ as a union of open balls and using properties of the pull-back f^{-1}.

A cautionary example

Let

$$
f(x, y)=\left\{\begin{array}{l}
\frac{x^{2} y}{x^{4}+y^{2}}, \quad(x, y) \neq(0,0) \\
0, \quad(x, y)=(0,0)
\end{array}\right.
$$

Then f is not continuous at $(x, y)=(0,0)$.
However, along every straight line through the origin $y=a x$, the limit is in fact 0! That is,

$$
\lim _{t \rightarrow 0} f(t, a t)=\lim _{t \rightarrow 0} \frac{t^{2} \cdot a t}{t^{4}+a^{2} t^{2}}=\lim _{t \rightarrow 0} \frac{t^{2}}{t^{2}} \frac{a t}{t^{2}+a^{2}}=0
$$

But along the curve $y=x^{2}$, we get something else:

$$
\lim _{t \rightarrow 0} f\left(t, t^{2}\right)=\lim _{t \rightarrow 0} \frac{t^{2} \cdot t^{2}}{t^{4}+\left(t^{2}\right)^{2}}=\lim _{t \rightarrow 0} \frac{t^{4}}{t^{4}} \frac{1}{2}=\frac{1}{2} .
$$

Lecture Four: Multivariable Calculus Refresher Differentiability

(1) Lecture Four: Multivariable Calculus Refresher

- Topology on \mathbb{R}^{n}
- Limits and continuity
- Differentiability
- Inverse and Implicit Function Theorems

Partial derivatives

Definition

The i 'th partial derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $x=\left(x^{1}, \ldots, x^{n}\right)$ is

$$
\partial_{i} f(x)=\frac{\partial f}{\partial x^{i}}(x)=\lim _{h \rightarrow 0} \frac{f\left(x^{1}, \ldots, x^{i-1}, x^{i}+h, x^{i+1}, \ldots x^{n}\right)-f\left(x^{1}, \ldots, x^{n}\right)}{h}
$$

whenever the limit exists.
The partial derivative is simply the usual derivative of a function of one variable holding all other variables fixed.

Directional derivatives

Definition

Let $X=\left(X^{1}, \ldots, X^{n}\right) \in \mathbb{R}^{n}$. The directional derivative $d f_{X} \cdot X$ of f at x in the direction X is

$$
\partial_{X} f(x)=\left.\partial_{t}\right|_{t=0} f(x+t X)=\lim _{h \rightarrow 0} \frac{f(x+h X)-f(x)}{h}
$$

The partial derivative is simply the directional derivative with $X=e_{i}$ where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ with the 1 in the i 'th position is the so-called i 'th basis vector.

The Differential

Recall that Taylor's theorem with remainder states that

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+R_{x_{0}}(x)
$$

where

$$
\lim _{x \rightarrow x_{0}} \frac{\left|R_{x_{0}}(x)\right|}{x-x_{0}}=0
$$

We write $R_{x_{0}}(x)=o(x)$ as $x \rightarrow x_{0}$.

Definition

We say $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at x_{0} if there exists a linear map $L_{x_{0}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{x \rightarrow x_{0}} \frac{\left|f(x)-f\left(x_{0}\right)-L_{x_{0}} \cdot\left(x-x_{0}\right)\right|}{\left|x-x_{0}\right|}=0
$$

That is, there exists a linear map written $L_{x_{0}}=d f_{x_{0}}$ such that

$$
f(x)=f\left(x_{0}\right)+d f_{x_{0}} \cdot\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right), \quad \text { as } x \rightarrow x_{0} .
$$

Differentiable imples partial derivatives exist

Let f be differentiable at $x_{0}=\left(x_{0}^{1}, \ldots, x_{0}^{n}\right)$. For $h \neq 0$, let $x=\left(x_{0}^{1}, \ldots, x_{0}^{i-1}, x_{0}^{i}+h, x_{0}^{i+1}, \ldots, x_{0}^{n}\right)=x_{0}+h e_{i}$. We have

$$
\partial_{i} f\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h e_{i}\right)-f\left(x_{0}\right)}{h}
$$

provided the limit exists. Differentiability ensures that

$$
0=\lim _{h \rightarrow 0}\left|\frac{f\left(x_{0}+h e_{i}\right)-f\left(x_{0}\right)}{h}-\frac{d f_{x_{0}} \cdot h e_{i}}{h}\right|
$$

and hence

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h e_{i}\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} d f_{x_{0}} \cdot h e_{i}=d f_{x_{0}} \cdot e_{i}
$$

exists.

- Exercise: Show that the same argument proves $\partial_{X} f\left(x_{0}\right)=d f_{x_{0}}(X)$ exists.

A cautionary example

Let

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0) .\end{cases}
$$

Notice that

$$
\partial_{x} f(0,0)=\left.\partial_{t}\right|_{t=0} f(t, 0)=\left.\partial_{t}\right|_{t=0} \frac{t \cdot 0}{t^{2}+0^{2}}=0
$$

Likewise $\partial_{y} f(0,0)=0$.
However,

$$
\partial_{(1,1)} f(0,0)=\left.\partial_{t}\right|_{t=0} f(t, t)=\lim _{t \rightarrow 0} \frac{1}{t}(f(t, t)-f(0,0))
$$

is undefined since $f(t, t)=t^{2} /\left(t^{2}+t^{2}\right)=1 / 2$.
Defining, $f(0,0)=1 / 2$ doesn't help because then $\partial_{(1,2)} f(0,0)$ doesn't exist. In fact, f is not even continuous at $(0,0)$.

C^{1} functions

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is C^{1} (i.e. has continuous derivative) if f is differentiable at each x and moreover, the map

$$
x \mapsto d f_{x}
$$

is continuous. This is equivalent to having /continuous/ partial derivatives.
Note here that $d f_{x}$ is a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and the set of all these is linearly isomorphic to the space $M_{n, m}$ of n by m matrices, which is itself linearly isomorphic to $\mathbb{R}^{n m}$ (index by i, j with $1 \leq i \leq n$ and $1 \leq j \leq m$). Concretely we may realise $d f_{x}$ as the matrix

$$
\left(d f_{x}\right)_{i j}=\partial_{i} f^{j}(x) \text { since } \quad d f_{x} \cdot e_{i}=\partial_{i} f(x)=\left(\partial_{i} f^{1}, \ldots, \partial_{i} f^{n}\right)
$$

Then $d f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n m}$ is a map between Euclidean spaces so we can ask if it's differentiable. Then f is C^{2} if $d^{2} f$ is C^{1} and more generally, f is C^{k} if $d^{k} f$ is continuous.

Chain Rule

Theorem (Chain Rule)

The chain rule states that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at x_{0} and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ is differentiable at $f\left(x_{0}\right)$, then

$$
d(f \circ h)_{x_{0}}=d h_{f\left(x_{0}\right)} \cdot d f_{x_{0}} .
$$

By the chain rule, given any curve γ such that $\gamma(0)=x$ and $\gamma^{\prime}(0)=X$ we have

$$
d f_{x} \cdot X=\left.\partial_{t}\right|_{t=0} f(\gamma(t)) .
$$

In other words, to compute $\partial_{X} f(x)$ we may replace the curve $t \mapsto x+t X$ with any other curve such that $\gamma(0)=x$ and $\gamma^{\prime}(0)=X$.

Lecture Four: Multivariable Calculus Refresher - Inverse and Implicit Function Theorems

(1) Lecture Four: Multivariable Calculus Refresher

- Topology on \mathbb{R}^{n}
- Limits and continuity
- Differentiability
- Inverse and Implicit Function Theorems

One Dimensional Inverse Function Theorem

Theorem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function with $f^{\prime}\left(x_{0}\right) \neq 0$, there exists an interval I containing x_{0} and an interval J containing $f\left(x_{0}\right)$ so that $f: I \rightarrow J$ is a diffeomorphism. That is, there exists an inverse function $f^{1}: J \rightarrow I$. Moreover, for all $y \in J$,

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)} .
$$

- To be explicit, the definition of f^{-1} means that $\left.f \circ f^{-1}(y)=y\right)$ for all $y \in J$ and $f^{-1} \circ f(x)=x$ for all $x \in I$.
- In this case, observe that if $h: J \rightarrow \mathbb{R}$ is a smooth function, then so too is $h \circ f$. This defines the pull-back

$$
f^{*}: h \in C^{\infty}(J, \mathbb{R}) \mapsto h \circ f \in C^{\infty}(I, \mathbb{R})
$$

- Exercise: Show that f^{*} is a bijection with inverse $\left(f^{-1}\right)^{*}$.

Contraction mappings and fixed points

Definition

A map $T: \bar{B}_{r}(p) \rightarrow \bar{B}_{r}(p)$ is a contraction map if there exists a constant $0 \leq L<1$ such that

$$
|T(x)-T(y)| \leq L|x-y| .
$$

Theorem (Banach fixed point theorem)

Let T be a contraction map. Then there exists a unique fixed point $x^{*} \in B_{r}(p)$ of T. That is, there exists a unique point x^{*} such that $T\left(x^{*}\right)=x^{*}$.

Proof of contraction mapping theorem (Uniqueness)

Proof.

Fundamental contraction identity:

$$
\begin{aligned}
|x-y| & \leq|x-T(x)|+|T(x)-y| \\
& \leq|x-T(x)|+|T(x)-T(y)|+|T(y)-y| \\
& \leq|x-T(x)|+L|x-y|+|T(y)-y| .
\end{aligned}
$$

Therefore

$$
|x-y| \leq \frac{|x-T(x)|+|T(y)-y|}{1-L}
$$

Thus we obtain uniqueness: if $T(x)=x$ and $T(y)=y$, then $|x-y| \leq 0$ and hence $x=y$.

Proof of contraction mapping theorem (Existence)

Proof.

Pick any x_{0} and define $x_{n}=T^{n}\left(x_{0}\right)=\underbrace{T \circ \ldots \circ T}\left(x_{0}\right)$
n times
The claim is that $x^{*}=\lim _{n \rightarrow \infty} x_{n}$ exists and is the desired fixed point. Supposing first that the limit exists, then using $x_{n}=T\left(x_{n-1}\right)$ we have

$$
x_{*}=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} T\left(x_{n-1}\right)=T\left(\lim _{n \rightarrow \infty} x_{n-1}\right)=T\left(x^{*}\right)
$$

where we pass the limit through T since a contraction mapping is continuous (for any ϵ choose $\delta=\epsilon / \mathrm{L}$).

Proof of contraction mapping theorem (Existence)

Proof.

To prove that $x_{n}=T^{n}\left(x_{0}\right)$ has a limit we prove it's a Cauchy sequence. By the fundamental contraction identity

$$
\begin{aligned}
\left|T^{n}\left(x_{0}\right)-T^{m}\left(x_{0}\right)\right| & \leq \frac{\left|T\left(T^{n}\left(x_{0}\right)\right)-T^{n}\left(x_{0}\right)\right|+\left|T\left(T^{m}\left(x_{0}\right)\right)-T^{m}\left(x_{0}\right)\right|}{1-L} \\
& =\frac{\left|T^{n}\left(T\left(x_{0}\right)\right)-T^{n}\left(x_{0}\right)\right|+\mid T^{m}\left(T\left(x_{0}\right)-T^{m}\left(x_{0}\right) \mid\right.}{1-L} \\
& \leq \frac{L^{n}\left|T\left(x_{0}\right)-x_{0}\right|+L^{m}\left|T\left(x_{0}\right)-x_{0}\right|}{1-L} \\
& =\frac{L^{n}+L^{m}}{1-L}\left|T\left(x_{0}\right)-x_{0}\right| \rightarrow 0 \text { as } n, m \rightarrow \infty .
\end{aligned}
$$

Here we used that $0 \leq L<1$ and by induction that (exercise!)

$$
\left|T^{n}(x)-T^{n}(y)\right| \leq L^{n}|x-y| .
$$

Inverse Function Theorem

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a smooth function such that $d f_{x_{0}}$ is invertible at x_{0}. Then there is an open set U containing x_{0} and an open set V containing $f\left(x_{0}\right)$ such that $f \mid U: U \rightarrow V$ is a diffeomorphism. Moreover

$$
d f_{f\left(x_{0}\right)}^{-1}=\left(d f_{x_{0}}\right)^{-1}
$$

Remark

Notice that if f is a diffeomorphism, then $f^{-1} \circ f(x)=x$. That is, $f^{-1} \circ f=\mathrm{Id}_{x}$. Since $d \mathrm{Id}_{x}=\mathrm{Id}_{n}$, by the chain rule we have

$$
\operatorname{ld}_{n}=d \operatorname{ld}_{x}=d\left(f^{-1} \circ f\right)_{x_{0}}=d f_{f\left(x_{0}\right)}^{-1} \cdot d f_{x_{0}}
$$

That is $d f_{x_{0}}$ is invertible and

$$
\left(d f_{x_{0}}\right)^{-1}=d f_{f\left(x_{0}\right)}^{-1} .
$$

Inverse Function Theorem: Idea

Proof.

Here's the basic idea: By definition, we have

$$
f(x)=f\left(x_{0}\right)+d f_{x_{0}} \cdot\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right)
$$

Ignoring the error term for the moment, by assumption since $d f_{x_{0}}$ is invertible, we can solve uniquely for x :

$$
f(x)=f\left(x_{0}\right)+d f_{x_{0}} \cdot\left(x-x_{0}\right) \Rightarrow x=x_{0}+d f_{x_{0}}^{-1}\left(f(x)-f\left(x_{0}\right)\right) .
$$

Write $y=f(x)$ and $y_{0}=f\left(x_{0}\right)$. Since y uniquely determines x we may write $x=f^{-1}(y)$ and

$$
f^{-1}(y)=f^{-1}\left(y_{0}\right)+d f_{x_{0}}^{-1} \cdot\left(y-y_{0}\right) .
$$

So we need to deal with the error terms.

Inverse Function Theorem: Contraction

Proof.

We use the contraction mapping theorem: Define for each fixed y,

$$
T_{y}(x)=x-d f_{x_{0}}^{-1}(f(x)-y)
$$

Then since f is C^{1}, so too is T (dropping the y subscript for convenience) and

$$
d T_{x_{0}}=d \mathrm{Id}_{x_{0}}-d f_{x_{0}}^{-1} d f_{x_{0}}=0
$$

By continuity of $d T$, there exists an open neighbourhood U of x_{0} such that $\left\|d T_{x_{0}}\right\| \leq 1 / 2$. That is, for $x \in U$ and $X \in \mathbb{R}^{n}$,

$$
\left|d T_{x} \cdot X\right| \leq \frac{1}{2}|X|
$$

Inverse Function Theorem: Contraction

Proof.

From $\left|d T_{x} \cdot X\right| \leq \frac{1}{2}|X|$, and the mean value inequality, we obtain

$$
\left|T\left(x_{1}\right)-T\left(x_{2}\right)\right| \leq \frac{1}{2}\left|x_{1}-x_{2}\right|
$$

so that T is contractive for $x_{1}, x_{2} \in U$.
In order to conclude that T has a unique fixed point, we need to verify that there is an $r>0$ such that $T: \bar{B}_{r}\left(x_{0}\right) \rightarrow \bar{B}_{r}\left(x_{0}\right)$.
Since $x_{0} \in U$ and U is open, there exists an $r>0$ such that $B_{r}\left(x_{0}\right) \subseteq U$.

Inverse function theorem: Contraction

Proof.

Now we restrict the range of possible y : Let $y_{0}=f\left(x_{0}\right)$ and $y \in B_{s}\left(y_{0}\right)$ with s any number satisfying

$$
0<s<\frac{1-L}{\left\|d f_{x_{0}}^{-1}\right\|} r .
$$

Then for $x \in B_{r}\left(x_{0}\right)$, recalling $T(x)=x-d f_{x_{0}}^{-1}(f(x)-y)$ we have

$$
\begin{aligned}
\left|T(x)-x_{0}\right| & \leq\left|T(x)-T\left(x_{0}\right)\right|+\left|T\left(x_{0}\right)-x_{0}\right| \\
& \leq L\left|x-x_{0}\right|+\left|-d f_{x_{0}}^{-1}\left(f\left(x_{0}\right)-y\right)\right| \\
& \leq L\left|x-x_{0}\right|+\left\|d f_{x_{0}}^{-1}\right\|\left|y_{0}-y\right| \\
& \leq r L+\left\|d f_{x_{0}}^{-1}\right\| s \\
& \leq r L+(1-L) r=r .
\end{aligned}
$$

Inverse function theorem: Fixed Point

Proof.

That is $T(x) \in \bar{B}_{x_{0}}(r)$ for $x \in \bar{B}_{x_{0}}(r)$ and $y \in \bar{B}_{s}\left(y_{0}\right)$.
Thus for any $y \in \bar{B}_{s}\left(x_{0}\right), T_{y}: \bar{B}_{r}\left(x_{0}\right) \rightarrow \bar{B}_{r}\left(x_{0}\right)$ is a contraction mapping, hence:
For each such y, there exists a unique fixed point $x_{y}^{*} \in \bar{B}_{r}\left(x_{0}\right)$. That is

$$
x_{y}^{*}=T_{y}\left(x_{y}^{*}\right)=x_{y}^{*}-d f_{x_{0}}^{-1}\left(f\left(x_{y}^{*}\right)-y\right)
$$

Cancelling x_{y}^{*} from both sides and since $d f_{x_{0}}^{-1}$ is non-singular,

$$
d f_{x_{0}}^{-1}\left(f\left(x_{y}^{*}\right)-y\right)=0 \Rightarrow f\left(x_{y}^{*}\right)=y .
$$

Inverse function theorem: Continuity of Inverse

Proof.

We have finally found our inverse function: $f^{-1}(y)=x_{y}^{*}$ for $y \in B_{s}\left(y_{0}\right)$. Note we need to restrict the range of x to the open set $f^{-1}\left(B_{s}\left(y_{0}\right)\right) \cap B_{r}\left(x_{0}\right)$ so that f maps this set into $B_{s}\left(y_{0}\right)$.
Since T is a contraction

$$
\left|x_{1}-x_{2}-d f_{x_{0}}^{-1}\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)\right|=\left|T\left(x_{1}\right)-T\left(x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right| .
$$

By the reverse triangle inequality

$$
\left|x_{1}-x_{2}\right|-\left|d f_{x_{0}}^{-1}\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)\right| \leq L\left|x_{1}-x_{2}\right| .
$$

That is,

$$
\left|x_{1}-x_{2}\right| \leq \frac{\left|d f_{x_{0}}^{-1}\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)\right|}{1-L} \leq \frac{\left\|d f_{x_{0}}^{-1}\right\|}{1-L}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| .
$$

Inverse function theorem: Continuity of Inverse

Proof.

We have

$$
\left|x_{1}-x_{2}\right| \leq \frac{\left\|d f_{x_{0}}^{-1}\right\|}{1-L}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| .
$$

Letting $y_{i}=f\left(x_{i}\right)$ so that $x_{i}=f^{-1}\left(y_{i}\right)$ gives continuity (even Lipschitz):

$$
\left|f^{-1}\left(y_{1}\right)-f^{-1}\left(y_{2}\right)\right| \leq \frac{\left\|d f_{x_{0}}^{-1}\right\|}{1-L}\left|y_{1}-y_{2}\right| .
$$

Lipschitz is almost differentiable but not quite (e.g. $f(x)=|x|$).

Inverse function theorem: Differentiability

Proof.

Pick any arbitrary $y \in B_{s}\left(y_{0}\right)$ and any h such that $y+h \in B_{s}\left(y_{0}\right)$, say $h \in B_{\epsilon}(0)$ so that $y+h \in B_{\epsilon}(y) \subseteq B_{s}\left(y_{0}\right)$.
Let $x=f^{-1}(y)$ and define

$$
R=f^{-1}(y+h)-f^{-1}(y)-d f_{x}^{-1} \cdot h .
$$

We need to show that

$$
\lim _{h \rightarrow 0} \frac{|R|}{|h|}=0 .
$$

Inverse function theorem: Differentiability

Proof.

Let $k=f^{-1}(y+h)-f^{-1}(y)$ so that $h=f(x+k)-f(x)$. Then

$$
\begin{aligned}
R & =f^{-1}(y+h)-f^{-1}(y)-d f_{x}^{-1} \cdot h \\
& =k-d f_{x}^{-1}(f(x+k)-f(x)) \\
& =k-d f_{x}^{-1}\left(d f_{x} k+o(k)\right) \\
& =-d f_{x}^{-1}(o(k)) .
\end{aligned}
$$

Inverse function theorem: Differentiability

Proof.

Since f^{-1} is Lipschitz, with constant M say, we have

$$
|k|=\left|f^{-1}(y+h)-f^{-1}(y)\right| \leq M|y+h-y|=M|h| .
$$

Therefore,

$$
\frac{|R|}{|h|} \leq\left\|d f_{x}^{-1}\right\| \frac{o(k)}{|h|} \leq M\left\|d f_{x}^{-1}\right\| \frac{o(k)}{|k|} .
$$

The right hand side goes to zero as $h \rightarrow 0$ since $|k| \leq M|h|$ implies $k \rightarrow 0$ and then by definition of $o(k)$.

Inverse function theorem: Higher regularity

Proof.

So to summarise we have shown the existence of a differentiable local inverse f^{-1} to f with differential

$$
d\left(f^{-1}\right)_{y}=\left(d f_{x}\right)^{-1}
$$

where $x=f^{-1}(y)$.
Now, by Cramers's rule, given an invertible matrix A, the inverse is

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A
$$

where the $\operatorname{adj} A$ is the adjugate matrix formed from cofactors of A - that is the determinants of the minors of A.
As a function then, $A \mapsto A^{-1}$ we see that the components are rational functions of the entries of A (since determinants are polynomials in the entries of A).

Inverse function theorem: Higher regularity

Proof.

Then the inverse function Inv is in fact a smooth function from the open set of non-singular matrices (i.e. those with $\operatorname{det} A \neq 0$) to itself.
Then since $x \mapsto d f_{x}$ is smooth,

$$
y \mapsto d f_{f-1}^{-1}(y)=\operatorname{Inv} \circ d f \circ f^{-1}(y)
$$

is the composition of C^{0} functions and hence $d f^{-1}$ is also C^{0}. That is f^{-1} is C^{1}. Therefore in fact $d f^{-1}$ is the composition of C^{1} functions hence is also C^{1}.
That is f^{-1} is C^{2}. Now we just iterate to get f^{-1} is C^{k} for any k and hence smooth.

Implicit Function Theorem

- In progress.

Submersions and Immersions

- In progress.

