MATH704 Differential Geometry
 Macquarie University, Semester 22018

Paul Bryan

Lecture Five: Surfaces that are graphs

(1) Lecture Five: Surfaces that are graphs

- Smooth functions
- Graphs of functions
- The tangent plane to a graph

Lecture Five: Surfaces that are graphs - Smooth functions

(1) Lecture Five: Surfaces that are graphs

- Smooth functions
- Graphs of functions
- The tangent plane to a graph

Scalar valued smooth functions

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth if all the partial derivatives,

$$
\partial_{i_{1} \cdots i_{k}} f:=\partial_{x^{i_{1}}} \cdots \partial_{x^{i_{k}}}:=\frac{\partial^{k} f}{\partial x^{i_{1}} \cdots \partial x^{i_{k}}}
$$

exist and are continuous.

- Here $k \in \mathbb{N}$ and $1 \leq i_{1}, \ldots, i_{k} \leq n$ are any choice of k indices between 1 and n.
- For $k=0$, there are no derivatives and in this case, the condition is just that f is continuous.
- The differential in the standard basis $\left\{e_{i}\right\}_{i=1}^{n}$ is now

$$
d f_{x}=\left(\begin{array}{lll}
\partial_{1} f & \cdots & \partial_{n} f
\end{array}\right)
$$

- Now we have a function $x \in \mathbb{R}^{n} \mapsto d f_{x} \in \mathbb{R}^{n}$. To define the second derivative, we need to differentiate functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Vector valued smooth functions

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is smooth if the component functions f_{i}, $1 \leq i \leq m$ are smooth where $f(x)=\left(f^{1}(x), \ldots, f^{m}(x)\right) \in \mathbb{R}^{m}$.

- Notice that for each $i=1, \cdots, n$, the differential, $d f_{i}$ is a $1 \times n$ matrix. That is, the differential becomes an $m \times n$ matrix:

$$
d f_{x}=\left(\begin{array}{ccc}
\partial_{1} f^{1} & \cdots & \partial_{n} f^{1} \\
\vdots & \ddots & \vdots \\
\partial_{1} f^{m} & \cdots & \partial_{n} f^{m}
\end{array}\right)
$$

Higher derivatives

- For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we now have

$$
d^{2} f=d(d f)=\left(\begin{array}{ccc}
\partial_{11} f & \cdots & \partial_{1 n} f \\
\vdots & \ddots & \vdots \\
\partial_{n 1} f & \cdots & \partial_{n n} f
\end{array}\right)
$$

- For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, write $\left(d f_{x}\right)_{i j}=\left(\partial_{i} f^{j}\right)_{i j}$ for the differential and observe that differentiating again, gives for each component, $\partial_{i} f^{j}$

$$
\partial_{k} \partial_{i} f^{j}
$$

- In other words, for each $1 \leq j \leq m$, we get a matrix $d^{2} f^{j}$.
- These are tensors. In general $d^{k} f$ is an order $(k+1)$ object, indexed by indices $1 \leq j \leq m$ and $1 \leq i_{1}, \cdots, i_{k} \leq n$.

Lecture Five: Surfaces that are graphs - Graphs of functions
(1) Lecture Five: Surfaces that are graphs

- Smooth functions
- Graphs of functions
- The tangent plane to a graph

The graph of a function

Definition

Let $f: U \subseteq$ open $\mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function. The graph, $\operatorname{Gr} f$ is the set,

$$
\operatorname{Gr} f:=\{(u, v, f(u, v)):(u, v) \in U\} \subseteq \mathbb{R}^{3}
$$

The function $F: U \rightarrow \mathbb{R}^{3}$ defined by

$$
F(u, v)=(u, v, f(u, v))
$$

is a parmetrisation of $\operatorname{Gr} f$.
Notice that the function F is smooth and gives a one to one identification of the points $(x, y, z) \in G r f$ with the points $(u, v) \in U$ an open set of \mathbb{R}^{2} on which we can do calculus!

Smooth functions on a graph

Definition

A function $\varphi: \operatorname{Gr} f \rightarrow \mathbb{R}$ is smooth if the function

$$
\varphi \circ F(x, y)=\varphi(x, y, f(x, y))
$$

is smooth. A function $\varphi=\left(\varphi^{1}, \ldots, \varphi^{m}\right): \operatorname{Gr} f \rightarrow \mathbb{R}^{m}$ is smooth if each φ^{i} is.

If $\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is smooth then, by the chain rule $\varphi:=\left.\Phi\right|_{\operatorname{Grf} \text { is smooth since }}$

$$
\varphi \circ F=\left.\Phi\right|_{\mathrm{Gr} f} \circ F=\Phi \circ F
$$

is the composition of smooth functions.

Extension of smooth functions on a graph

Lemma

Let $\varphi: \operatorname{Gr} f \rightarrow \mathbb{R}$ be a smooth function. Then locally there exists a smooth function $\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\varphi=\Phi_{G r f}$.

Proof.

- Define $G(u, v, w)=(u, v, w+f(u, v))$ for $(u, v, w) \in U \times \mathbb{R}$.
- Then $G(u, v, 0)=F(u, v)$ parametrises $G r f$.
- The differential is nonsingular:

$$
d G=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\partial_{U} f & \partial_{v} f & 1
\end{array}\right) .
$$

- Hence by the inverse function theorem, there is a neighbourhood of W of each ($u_{0}, v_{0}, 0$) and a neighbourhood V of $\left(x_{0}, y_{0}, z_{0}\right)=\left(u_{0}, v_{0}, f\left(u_{0}, v_{0}\right)\right)$ such that $G: W \rightarrow V$ is

Extension of smooth functions on a graph

Proof.

- $G=(u, v, w+f(u, v))$ is a local diffeomorphism around $\left(u_{0}, v_{0}, 0\right)$.
- Now define the smooth function

$$
\Phi(x, y, z)=\varphi \circ \bar{F} \circ G^{-1} .
$$

where $\bar{F}(u, v, w)=F(u, v)=G(u, v, 0)$.

- Note that Φ is defined on an open set of \mathbb{R}^{3} and not just on $\operatorname{Gr} f$.
- Then for $(x, y, z)=F(u, v) \in G r f$, we have $G^{-1}(x, y, z)=(u, v, 0)$ and hence

$$
\left.\Phi\right|_{\operatorname{Gr} f}(x, y, z)=\varphi \circ \bar{F}(u, v, 0)=\varphi(u, v, f(u, v))=\varphi(x, y, z) .
$$

Lecture Five: Surfaces that are graphs - The tangent plane to a graph
(1) Lecture Five: Surfaces that are graphs

- Smooth functions
- Graphs of functions
- The tangent plane to a graph

Tangent Vectors

- If $\varphi: \operatorname{Gr} f \rightarrow \mathbb{R}$ is smooth we know what $d(\varphi \circ F)$ is. But what is $d \varphi$?
- Indeed, as a linear map, what is the domain of $d \varphi$?

Definition

A tangent vector at x to $G r f$ is a vector $X \in \mathbb{R}^{3}$ such that there exists a curve $\gamma:(-\epsilon, \epsilon) \rightarrow \operatorname{Gr} f \subseteq \mathbb{R}^{3}$ with

$$
\gamma(0)=x, \quad \gamma^{\prime}(0)=X
$$

The tangent plane, $T_{x} \operatorname{Gr} f$ to $\operatorname{Gr} f$ at x is the set of tangent vectors at x.

- Tangent vectors are velocity vectors to curves along the graph.

Tangent plane

Lemma

The tangent plane, $T_{x} \operatorname{Gr} f=d F_{(u, v)}\left(\mathbb{R}^{2}\right)$ is a plane in \mathbb{R}^{3} where $F(u, v)=x$.

Proof.

Let $(u, v) \in \mathbb{R}^{2}$ be the unique point such that $x=F(u, v)$.
We have

$$
d F_{(u, v)}\left(\mathbb{R}^{2}\right)=\left\{c^{1} d F \cdot e_{1}+c^{2} d F \cdot e_{2}=d F\left(c^{1} e_{1}+c^{2} e_{2}\right): c^{1}, c^{2} \in \mathbb{R}\right\} .
$$

and

$$
T_{x} \operatorname{Gr} f=\left\{\gamma^{\prime}(0): \gamma(0)=x\right\} .
$$

Tangent plane: $d f\left(\mathbb{R}^{2}\right) \subseteq T_{x} \operatorname{Gr} f$.

Proof.

Since $F: U \rightarrow \mathbb{R}^{3}$ with U open, given any c^{1}, c^{2}, there exists an $\epsilon>0$ such that

$$
\gamma(t)=(u, v)+t\left(c^{1} e_{1}+c^{2} e_{2}\right) \in U, \quad t \in(-\epsilon, \epsilon) .
$$

Then $F \circ \gamma:(-\epsilon, \epsilon) \rightarrow G r f$ satisfies $F \circ \gamma(0)=x$ and

$$
X=(F \circ \gamma)^{\prime}(0)=d F_{(u, v)} \cdot \gamma^{\prime}(0)=d F_{(u, v)} \cdot\left(c^{1} e_{1}+c^{2} e_{2}\right) \in T_{x} G r f .
$$

Thus $d F_{(u, v)}\left(\mathbb{R}^{2}\right) \subseteq T_{x} \operatorname{Gr} f$.

Tangent plane: $T_{x} G r f \subseteq d f\left(\mathbb{R}^{2}\right)$.

Proof.

Let $X=\gamma^{\prime}(0)$.
Define

$$
\mu(t)=\pi \circ G^{-1} \circ \gamma(t)
$$

where $\pi:(u, v, w)=(u, v)$ is orthogonal projection onto the (u, v) plane. Recall that if $\gamma(t)=(x(t), y(t), z(t)) \in \operatorname{Gr} f$, then

$$
G^{-1}(x(t), y(t), z(t))=(u(t), v(t), 0) .
$$

with $F(u(t), v(t))=(x(t), y(t), z(t))$.
Thus letting $\mu^{\prime}(0)=c^{1} e_{1}+c^{2} e_{2}$ we have

$$
d F_{(u, v)}\left(c^{1} e_{1}+c^{2} e_{2}\right)=(F \circ \mu)^{\prime}(0)=\left(F \circ \pi \circ G^{-1} \circ \gamma\right)^{\prime}(0)=\gamma^{\prime}(0)=X
$$

Thus $T_{x} \operatorname{Gr} f \subseteq d F_{(u, v)}\left(\mathbb{R}^{2}\right)$.

Vector space structure on the tangent plane

We have two ways of realising the tangent plane as a vector space:
(1) $T_{x} G r f$ is a set of vectors in \mathbb{R}^{3}. So they inherit a vector space structure directly from \mathbb{R}^{3} !
In terms of curves, let $X_{i}=\gamma_{i}^{\prime}(0)$ with $\gamma_{i}(0)=x$ for $i=1,2$.
Note that if $\gamma_{i}(t)=\left(x_{i}(t), y_{i}(t), z_{i}(t)\right)$ then
$\gamma_{i}^{\prime}(0)=\left(x_{i}^{\prime}(0), y_{i}^{\prime}(0), z_{i}^{\prime}(0)\right)$. The vector space operations are then

$$
c^{1} X_{1}+c^{2} X_{2}=\mu^{\prime}(0)
$$

where

$$
\mu(t)=x+c^{1}\left(\gamma_{1}(t)-x\right)+c^{2}\left(\gamma_{2}(t)-x\right)
$$

Then $\mu^{\prime}(0)=c^{1} \gamma_{1}^{\prime}(0)+c^{2} \gamma_{2}^{\prime}(t)=c^{1} X_{1}+c^{2} X_{2}$.
(2) \mathbb{R}^{2} is already a vector space and $d F$ is injective since

$$
F_{u}=d F\left(e_{1}\right)=\partial_{u} F=e_{1}+\partial_{u} f, \quad F_{v}=d F\left(e_{2}\right)=\partial_{v} F=e_{2}+\partial_{v} f
$$

are linearly independent. Then $c^{1} X_{1}+c^{2} X_{2}=d F\left(c^{1} Y_{1}+c^{2} Y_{2}\right)$ where $d F\left(Y_{i}\right)=X_{i}$ with Y_{i} uniquely determined.

Vector space structure on the tangent plane

Exercise: Show that the map

$$
A: c^{1} e_{1}+\left.c^{2} e_{2} \mapsto \partial_{t}\right|_{t=0} F\left((u, v)+t\left(c^{1} e_{1}+c^{2} e_{2}\right)\right)
$$

induces a linear isomorphism between $d F_{(u, v)}\left(\mathbb{R}^{2}\right)$ and $T_{x} \mathrm{Gr} f$. Thus the two vector space structures are equivalent in the sense that they are isomorphic.

The differential

Now let $\varphi: \operatorname{Gr} f \rightarrow \mathbb{R}$. Then we have two ways to define

$$
d \varphi: T_{x} \operatorname{Gr} f \rightarrow \mathbb{R}
$$

(1)

$$
d \varphi\left(c^{1} F_{u}+c^{2} F_{v}\right)=d(\varphi \circ F)\left(c^{1} e_{1}+c^{2} e_{2}\right)
$$

(2)

$$
d \varphi\left(c^{1} X_{1}+c^{2} X_{2}\right)=\left.\partial_{t}\right|_{t=0} \Phi\left(x+\left(\gamma_{1}(t)-x\right)+\left(\gamma_{2}(t)-x\right)\right) .
$$

where Φ is any extension of φ. Why do we need to this? Does the result depend on the extension?

Exercise: Show that if $X=A(Y)$ from the isomorphism above, then $d \varphi Y=d \varphi X$ where the first $d \varphi$ is from the first definition and the second $d \varphi$ uses the second definition.

