MATH704 Differential Geometry Macquarie University, Semester 2 2018

Paul Bryan

Lecture Five: Surfaces that are graphs

- Smooth functions
- Graphs of functions
- The tangent plane to a graph

Lecture Five: Surfaces that are graphs - Smooth functions

- Smooth functions
- Graphs of functions
- The tangent plane to a graph

Scalar valued smooth functions

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is smooth if all the partial derivatives,

$$\partial_{i_1\cdots i_k}f := \partial_{x^{i_1}}\cdots \partial_{x^{i_k}} := \frac{\partial^k f}{\partial x^{i_1}\cdots \partial x^{i_k}}$$

exist and are continuous.

- Here k ∈ N and 1 ≤ i₁,..., i_k ≤ n are any choice of k indices between 1 and n.
- For k = 0, there are no derivatives and in this case, the condition is just that f is continuous.
- The differential in the standard basis $\{e_i\}_{i=1}^n$ is now

$$df_x = (\partial_1 f \cdots \partial_n f).$$

• Now we have a function $x \in \mathbb{R}^n \mapsto df_x \in \mathbb{R}^n$. To define the second derivative, we need to differentiate functions $\mathbb{R}^n \to \mathbb{R}^n$.

Vector valued smooth functions

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is smooth if the component functions f_i , $1 \le i \le m$ are smooth where $f(x) = (f^1(x), \dots, f^m(x)) \in \mathbb{R}^m$.

 Notice that for each i = 1, ..., n, the differential, df_i is a 1 × n matrix. That is, the differential becomes an m × n matrix:

$$df_{x} = \begin{pmatrix} \partial_{1}f^{1} & \cdots & \partial_{n}f^{1} \\ \vdots & \vdots & \vdots \\ \partial_{1}f^{m} & \cdots & \partial_{n}f^{m} \end{pmatrix}$$

Higher derivatives

• For $f : \mathbb{R}^n \to \mathbb{R}$ we now have

$$d^{2}f = d(df) = \begin{pmatrix} \partial_{11}f & \cdots & \partial_{1n}f \\ \vdots & \ddots & \vdots \\ \partial_{n1}f & \cdots & \partial_{nn}f \end{pmatrix}$$

For f : ℝⁿ → ℝ^m, write (df_x)_{ij} = (∂_if^j)_{ij} for the differential and observe that differentiating again, gives for each component, ∂_if^j
 ∂_k∂_if^j.

- In other words, for each $1 \le j \le m$, we get a matrix $d^2 f^j$.
- These are *tensors*. In general d^kf is an order (k + 1) object, indexed by indices 1 ≤ j ≤ m and 1 ≤ i₁, · · · , i_k ≤ n.

Lecture Five: Surfaces that are graphs - Graphs of functions

- Smooth functions
- Graphs of functions
- The tangent plane to a graph

The graph of a function

Definition

Let $f: U \subseteq_{\text{open}} \mathbb{R}^2 \to \mathbb{R}$ be a smooth function. The graph, Gr f is the set, Gr $f := \{(u, v, f(u, v)) : (u, v) \in U\} \subseteq \mathbb{R}^3$.

The function $F: U \to \mathbb{R}^3$ defined by

$$F(u,v) = (u,v,f(u,v))$$

is a *parmetrisation* of Gr f

Notice that the function F is smooth and gives a one to one identification of the points $(x, y, z) \in \text{Gr } f$ with the points $(u, v) \in U$ an open set of \mathbb{R}^2 on which we can do calculus!

Smooth functions on a graph

Definition

A function $\varphi:\operatorname{Gr} f\to \mathbb{R}$ is smooth if the function

$$\varphi \circ F(x,y) = \varphi(x,y,f(x,y))$$

is smooth. A function $\varphi = (\varphi^1, \dots, \varphi^m) : \operatorname{Gr} f \to \mathbb{R}^m$ is smooth if each φ^i is.

If $\Phi: \mathbb{R}^3 \to \mathbb{R}$ is smooth then, by the chain rule $\varphi := \Phi|_{\mathsf{Gr}\, f}$ is smooth since

$$\varphi \circ \textit{\textit{F}} = \Phi|_{\mathsf{Gr}\,\textit{f}} \circ \textit{\textit{F}} = \Phi \circ \textit{\textit{F}}$$

is the composition of smooth functions.

Extension of smooth functions on a graph

Lemma

Let φ : Gr $f \to \mathbb{R}$ be a smooth function. Then locally there exists a smooth function $\Phi : \mathbb{R}^3 \to \mathbb{R}$ such that $\varphi = \Phi_{Gr f}$.

Proof.

- Define G(u, v, w) = (u, v, w + f(u, v)) for $(u, v, w) \in U \times \mathbb{R}$.
- Then G(u, v, 0) = F(u, v) parametrises Gr f.

• The differential is nonsingular:

$$dG = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \partial_u f & \partial_v f & 1 \end{pmatrix}.$$

• Hence by the inverse function theorem, there is a neighbourhood of W of each $(u_0, v_0, 0)$ and a neighbourhood V of $(x_0, y_0, z_0) = (u_0, v_0, f(u_0, v_0))$ such that $G : W \to V$ is

Paul Bryan

Extension of smooth functions on a graph

Proof.

- G = (u, v, w + f(u, v)) is a local diffeomorphism around $(u_0, v_0, 0)$.
- Now define the smooth function

$$\Phi(x,y,z)=\varphi\circ\bar{F}\circ G^{-1}.$$

where $\bar{F}(u, v, w) = F(u, v) = G(u, v, 0)$.

- Note that Φ is defined on an open set of \mathbb{R}^3 and not just on Gr f.
- Then for $(x, y, z) = F(u, v) \in \operatorname{Gr} f$, we have $G^{-1}(x, y, z) = (u, v, 0)$ and hence

$$\Phi|_{\mathsf{Gr}\,f}(x,y,z)=\varphi\circ\bar{F}(u,v,0)=\varphi(u,v,f(u,v))=\varphi(x,y,z).$$

Lecture Five: Surfaces that are graphs - The tangent plane to a graph

- Smooth functions
- Graphs of functions
- The tangent plane to a graph

Tangent Vectors

• If $\varphi : \operatorname{Gr} f \to \mathbb{R}$ is smooth we know what $d(\varphi \circ F)$ is. But what is $d\varphi$?

• Indeed, as a linear map, what is the domain of d arphi ?

Definition

A tangent vector at x to Gr f is a vector $X \in \mathbb{R}^3$ such that there exists a curve $\gamma : (-\epsilon, \epsilon) \to \operatorname{Gr} f \subseteq \mathbb{R}^3$ with

$$\gamma(0) = x, \quad \gamma'(0) = X.$$

The tangent plane, $T_x \operatorname{Gr} f$ to $\operatorname{Gr} f$ at x is the set of tangent vectors at x.

• Tangent vectors are velocity vectors to curves *along the graph*.

Tangent plane

Lemma

The tangent plane, $T_x \operatorname{Gr} f = dF_{(u,v)}(\mathbb{R}^2)$ is a plane in \mathbb{R}^3 where F(u,v) = x.

Proof.

Let $(u, v) \in \mathbb{R}^2$ be the unique point such that x = F(u, v). We have

$$dF_{(u,v)}(\mathbb{R}^2) = \{c^1 dF \cdot e_1 + c^2 dF \cdot e_2 = dF(c^1 e_1 + c^2 e_2) : c^1, c^2 \in \mathbb{R}\}.$$

and

$$T_{\mathsf{x}}\operatorname{\mathsf{Gr}} f = \{\gamma'(0) : \gamma(0) = x\}.$$

Tangent plane: $df(\mathbb{R}^2) \subseteq T_x \operatorname{Gr} f$.

Proof.

Since $F:U o \mathbb{R}^3$ with U open, given any c^1,c^2 , there exists an $\epsilon>0$ such that

$$\gamma(t) = (u, v) + t(c^1e_1 + c^2e_2) \in U, \quad t \in (-\epsilon, \epsilon).$$

Then
$$F \circ \gamma : (-\epsilon, \epsilon) \to \operatorname{Gr} f$$
 satisfies $F \circ \gamma(0) = x$ and

$$X = (F \circ \gamma)'(0) = dF_{(u,v)} \cdot \gamma'(0) = dF_{(u,v)} \cdot (c^1 e_1 + c^2 e_2) \in T_x \operatorname{Gr} f.$$

Thus $dF_{(u,v)}(\mathbb{R}^2) \subseteq T_x \operatorname{Gr} f$.

Tangent plane: $T_x \operatorname{Gr} f \subseteq df(\mathbb{R}^2)$.

Proof.

Let $X = \gamma'(0)$. Define

$$\mu(t) = \pi \circ G^{-1} \circ \gamma(t)$$

where $\pi : (u, v, w) = (u, v)$ is orthogonal projection onto the (u, v) plane. Recall that if $\gamma(t) = (x(t), y(t), z(t)) \in \text{Gr} f$, then

$$G^{-1}(x(t), y(t), z(t)) = (u(t), v(t), 0).$$

with F(u(t), v(t)) = (x(t), y(t), z(t)). Thus letting $\mu'(0) = c^1 e_1 + c^2 e_2$ we have

$$dF_{(u,v)}(c^1e_1 + c^2e_2) = (F \circ \mu)'(0) = (F \circ \pi \circ G^{-1} \circ \gamma)'(0) = \gamma'(0) = X.$$

Thus T_{x} Gr $f \subseteq dF_{(u,v)}(\mathbb{R}^{2})$.

Vector space structure on the tangent plane

We have two ways of realising the tangent plane as a vector space:

• T_x Gr f is a set of vectors in \mathbb{R}^3 . So they inherit a vector space structure directly from \mathbb{R}^3 !

In terms of curves, let $X_i = \gamma'_i(0)$ with $\gamma_i(0) = x$ for i = 1, 2. Note that if $\gamma_i(t) = (x_i(t), y_i(t), z_i(t))$ then $\gamma'_i(0) = (x'_i(0), y'_i(0), z'_i(0))$. The vector space operations are then

$$c^1 X_1 + c^2 X_2 = \mu'(0)$$

where

$$\mu(t) = x + c^{1}(\gamma_{1}(t) - x) + c^{2}(\gamma_{2}(t) - x)$$

Then $\mu'(0) = c^1 \gamma'_1(0) + c^2 \gamma'_2(t) = c^1 X_1 + c^2 X_2.$ **2** \mathbb{R}^2 is already a vector space and dF is injective since

$$F_u = dF(e_1) = \partial_u F = e_1 + \partial_u f, \quad F_v = dF(e_2) = \partial_v F = e_2 + \partial_v f$$

are linearly independent. Then $c^1X_1 + c^2X_2 = dF(c^1Y_1 + c^2Y_2)$ where $dF(Y_i) = X_i$ with Y_i uniquely determined.

Vector space structure on the tangent plane

Exercise: Show that the map

$$A: c^{1}e_{1} + c^{2}e_{2} \mapsto \partial_{t}|_{t=0}F((u,v) + t(c^{1}e_{1} + c^{2}e_{2}))$$

induces a linear isomorphism between $dF_{(u,v)}(\mathbb{R}^2)$ and $T_x \operatorname{Gr} f$. Thus the two vector space structures are equivalent in the sense that they are isomorphic.

The differential

Now let $\varphi : \operatorname{Gr} f \to \mathbb{R}$. Then we have two ways to define

 $d\varphi: T_x \operatorname{Gr} f \to \mathbb{R}.$

$$d\varphi(c^1F_u+c^2F_v)=d(\varphi\circ F)(c^1e_1+c^2e_2).$$

2

1

$$d\varphi(c^1X_1+c^2X_2)=\partial_t|_{t=0}\Phi\left(x+(\gamma_1(t)-x)+(\gamma_2(t)-x)\right).$$

where Φ is any extension of φ . Why do we need to this? Does the result depend on the extension?

Exercise: Show that if X = A(Y) from the isomorphism above, then $d\varphi Y = d\varphi X$ where the first $d\varphi$ is from the first definition and the second $d\varphi$ uses the second definition.