MATH704 Differential Geometry

Macquarie University, Semester 22018

Paul Bryan

Lecture Six: Regular Surfaces

EXPORT
(1) Lecture Six: Regular Surfaces

- Regular Surfaces
- Examples

Lecture Six: Regular Surfaces Export - Regular Surfaces

(1) Lecture Six: Regular Surfaces

- Regular Surfaces
- Examples

Graphs are not enough

RIEMANNIAN

Geometry

Manfredo Perdigio do Carmo

- Graphs are global surfaces. They are diffeomorphic to an open set in the plane.
- Many surfaces are not diffeomorphic to an open set in the plane!
- The sphere, a torus, etc.

Definition of Regular Surface

Definition

A regular surface, $S \subseteq \mathbb{R}^{3}$ is subset of \mathbb{R}^{3} such that there exists smooth local parametrisations $\varphi_{\alpha}: U_{\alpha} \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ satisfying for each α,
(1) $S=\cup_{\alpha} V_{\alpha}$ where $V_{\alpha}=\varphi_{\alpha}\left(U_{\alpha}\right)=W_{\alpha} \cap S, W_{\alpha} \subseteq \mathbb{R}^{3}$ open,
(2) φ_{α} is a homeomorphism onto it's image $V_{\alpha}=\varphi_{\alpha}\left(U_{\alpha}\right)$
(3) $\left.d \varphi_{\alpha}\right|_{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is injective for each $x \in U_{\alpha}$.

Remarks on the definition

Surfaces look locally like \mathbb{R}^{2}.

- Items 1 and 2 say each point of S has a neighbourhood in a continuous one to one correspondence with an open set of the plane.
- Here continuity is derived from continuity on \mathbb{R}^{3} :
- Continuity of the map

$$
\varphi_{\alpha}^{-1}: V_{\alpha} \subseteq S \subseteq \mathbb{R}^{3} \rightarrow U_{\alpha} \subseteq \mathbb{R}^{2}
$$

means for all convergent sequences $\left(x_{n}\right) \subseteq V_{\alpha}$, we have

$$
\lim _{n \rightarrow \infty} \varphi_{\alpha}^{-1}\left(x_{n}\right)=\varphi_{\alpha}^{-1}\left(\lim _{n \rightarrow \infty} x_{n}\right)
$$

- We say a subset $V \subseteq S$ is open if and only if $V=W \cap S$ for some open set $W \subseteq \mathbb{R}^{3}$. Thus each $V_{\alpha}=W_{\alpha} \cap S$ is open.
- Differentiability is not so easy.
- Recall we need to make use of the linear structure in order to define derivatives.
- But S need not be a linear subspace!

Change of Parameters

The third condition implies that for each α, β, the change of parameters

$$
\tau_{\alpha \beta}=\varphi_{\beta}^{-1} \circ \varphi_{\alpha}: \varphi_{\alpha}^{-1}\left(V_{\beta}\right) \subseteq \mathbb{R}^{2} \rightarrow \varphi_{\beta}^{-1}\left(V_{\alpha}\right) \subseteq \mathbb{R}^{2}
$$

is a diffeomorphism.
That is, $\tau_{\alpha \beta}$ is smooth with a smooth inverse. The inverse is in fact $\tau_{\beta \alpha}$.

- We could replace condition 3 that $d \varphi_{\alpha}$ is injective with the condition that $\tau_{\alpha \beta}$ is smooth.

Key Property of Change of Parameters

We have that $\tau_{\alpha \beta}$ is a diffeomorphism.
Fact:

$$
\Phi_{\alpha \beta}: f \in C^{\infty}\left(\varphi_{\beta}^{-1}\left(V_{\alpha}\right), \mathbb{R}\right) \mapsto f \circ \tau_{\alpha \beta} \in C^{\infty}\left(\varphi_{\alpha}^{-1}\left(V_{\beta}\right), \mathbb{R}\right)
$$

is a bijection.

Calculus is diffeomorphism invariant!

Therefore, $\Phi_{\alpha \beta}$ establishes a one-to-one correspondence of smooth functions in one parametrisation with smooth functions in another parametrisation.
A function $f: \varphi_{\beta}^{-1}\left(V_{\alpha}\right) \rightarrow \mathbb{R}$ is differentiable if and only if
$f \circ \tau_{\alpha \beta}: \varphi_{\alpha}^{-1}\left(V_{\beta}\right) \rightarrow \mathbb{R}$ is differentiable.

Lecture Six: Regular Surfaces

EXPORT - Examples

(1) Lecture Six: Regular Surfaces

- Regular Surfaces
- Examples

Graphs

Graphs are regular surfaces.

- There is just one parametrisation:

$$
\varphi:(u, v) \mapsto(u, v, f(u, v))
$$

- This map is a homeomorphism with inverse $\varphi^{-1}(x, y, z)=(x, y)$ which is continuous since it is just the projection $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ onto the $z=0$ plane.
- The differential is injective:

$$
d \varphi=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\partial_{u} f & \partial_{v} f
\end{array}\right)
$$

The Sphere

RIEMANNIAN

GEOMETRY

- The sphere is not a graph over any plane $P \subseteq \mathbb{R}^{3}$
- Let N be the normal to P. Then for any point $p \in P$, the line $p+t N$ either intersects in exactly 2 distinct points, 1 point (precisely for $t=0$) or no points. Why?
- Substitute: $p+t N$ into $x^{2}+y^{2}+z^{2}=1$ and you get a quadratic in t.
- Provided $p+t N$ is not tangent to the sphere, the quadratic has either 0 roots or 2 roots.

Parametrising the sphere

Let $U=\left\{u^{2}+v^{2}<1\right\}$ be the unit disc. We do North, South, East, West.

- Northern hemisphere (over $z=0$ plane)

$$
\varphi_{N}(u, v)=\left(u, v, \sqrt{1-\left(u^{2}+v^{2}\right)}\right)
$$

- Southern hemisphere (over $z=0$ plane)

$$
\varphi_{S}(u, v)=\left(u, v,-\sqrt{1-\left(u^{2}+v^{2}\right)}\right)
$$

- Eastern hemisphere (over $y=0$ plane)

$$
\varphi_{E}(u, v)=\left(u, \sqrt{1-\left(u^{2}+v^{2}\right)}, v\right)
$$

- Western hemisphere (over $y=0$ plane)

$$
\varphi_{W}(u, v)=\left(u,-\sqrt{1-\left(u^{2}+v^{2}\right)}, v\right)
$$

Polar Coordinates

Let $(\theta, \phi) \in(0,2 \pi) \times(0, \pi)$.
Define

$$
\varphi(\theta, \phi)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)
$$

Then φ covers all of the sphere expect for the semi-circle $\{x \geq 0\} \cap\{y=0\} \cap \mathbb{S}^{2}$.
We cover the entire sphere by also using the parametrisation

$$
\psi(\theta, \phi)=(\sin \phi \cos \theta, \cos \phi, \sin \phi \sin \theta)
$$

The Torus

- Rotate an $x z$-plane circle $(x, y, z)=(a \cos \theta+b, 0, a \sin \theta)$ with $a<b$ around the z-axis.
- The rotation is

$$
(x, z) \mapsto(x \cos \phi, x \sin \phi, z)
$$

- Thus our parametrisation is

$$
(x, z) \mapsto(a \cos \phi \cos \theta+b \cos \phi, a \sin \phi \cos \theta+b \sin \phi, a \sin \theta) .
$$

