# MATH704 Differential Geometry 

Macquarie University, Semester 22018

Paul Bryan

## Lecture Seven: Geometry Of Regular Surfaces Export

(1) Lecture Seven: Geometry Of Regular Surfaces

- Smooth maps, differentials and tangent vectors
- Metric
- Geometry of Surfaces


## Lecture Seven: Geometry Of Regular Surfaces Export Smooth maps, differentials and tangent vectors

(1) Lecture Seven: Geometry Of Regular Surfaces

- Smooth maps, differentials and tangent vectors
- Metric
- Geometry of Surfaces


## Smooth Curves

## Definition

A curve, $\gamma:(a, b) \rightarrow S$ is smooth if for every local parametrisation, $\varphi: U \rightarrow S$, the curve

$$
\varphi^{-1} \circ \gamma: \gamma^{-1}(\varphi(U)) \rightarrow U
$$

is smooth for all $t \in(a, b)$ such that $\gamma(t) \in \varphi(U)$.
It is sufficient that $\varphi_{\alpha}^{-1} \circ \gamma$ is smooth for any cover $\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow V_{\alpha} \subseteq S\right\}_{\alpha \in \mathcal{A}}$ of the image $\gamma((a, b))$.

- If $\varphi: U \rightarrow S$ is any parametrisation such that $\gamma(t) \in \varphi(U)$, then choose any $\alpha$ such that $\gamma(t) \in V_{\alpha}$.
- The transition map $\tau=\varphi^{-1} \circ \varphi_{\alpha}$ is smooth. Therefore

$$
\varphi^{-1} \circ \gamma(t)=\varphi^{-1} \circ \varphi_{\alpha} \circ \varphi_{\alpha}^{-1} \circ \gamma=\tau \circ\left(\varphi_{\alpha}^{-1} \circ \gamma\right)
$$

is smooth.

## Coordinate Curves

Every curve $\mu:(a, b) \rightarrow U$ gives a smooth curve $\gamma=\varphi \circ \mu:(a, b) \rightarrow S$. Just observe that

$$
\varphi^{-1} \circ \gamma=\varphi^{-1} \circ \varphi \circ \mu=\mu
$$

is smooth.
For example, we have the smooth coordinate curves through $\left.\left(u_{0}, v_{0}\right)\right)$ :

$$
\gamma_{u}(t):=\varphi\left(t, v_{0}\right)
$$

where $t \in\left(u_{0}-\epsilon, u_{0}+\epsilon\right)$ for some $\epsilon>0$ so that $\left(t, v_{0}\right) \in U$. Similarly,

$$
\gamma_{v}(t):=\varphi\left(u_{0}, t\right)
$$

## Smooth Curves

## Lemma

A curve $\gamma:(a, b) \rightarrow S$ is smooth if and only if it is smooth as a map $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$.

## Proof.

The observation is that by the inverse function theorem, any local parametrisation $\varphi: U \rightarrow S$ extends to a smooth diffeomorphism

$$
\Phi: W \subseteq \text { open } U \times \mathbb{R} \rightarrow Z \subseteq_{\text {open }} \mathbb{R}^{3}
$$

with $\Phi(u, v, 0)=\varphi(u, v)$.
Then $\varphi^{-1} \circ \gamma=\phi^{-1} \circ \gamma$.
Exercise: Fill in the details!

## Smooth Maps

## Definition

Let $S_{1}, S_{2}$ be regular surfaces. A map $f: S_{1} \rightarrow S_{2}$ is smooth if

$$
\psi \circ f \circ \varphi^{-1}: \varphi\left[f^{-1}[Z] \cap V\right] \subseteq U \subseteq \mathbb{R}^{2} \rightarrow W \subseteq \mathbb{R}^{2}
$$

is smooth for every pair of local parametrisations

$$
\varphi: U \rightarrow V \subseteq S, \quad \psi: W \rightarrow Z \subset S^{\prime}
$$

Again, if $f$ is smooth with respect to one pair of parametrisations, then it is smooth with respect to all overlapping ones:

$$
\begin{aligned}
\psi_{2} \circ f \circ \varphi_{2}^{-1} & =\psi_{2} \circ\left(\psi_{1}^{-1} \circ \psi_{1}\right) \circ f \circ\left(\varphi_{1}^{-1} \circ \varphi_{1}\right) \circ \varphi_{2}^{-1} \\
& =\left(\psi_{2} \circ \psi_{1}^{-1}\right) \circ\left(\psi_{1} \circ f \circ \varphi_{1}^{-1}\right) \circ\left(\varphi_{1} \circ \varphi_{2}^{-1}\right) \\
& =\tau_{21}^{\psi} \circ \psi_{1} \circ f \circ \varphi_{1}^{-1} \circ \tau_{12}^{\varphi} .
\end{aligned}
$$

is smooth provided $\psi_{1} \circ f \circ \varphi_{1}^{-1}$ is smooth.

## Tangent Plane

## Definition

Let $x \in S$. The tangent plane $T_{x} S$ to $S$ at $x$ consists of all the vectors $X \in \mathbb{R}^{3}$, based at $x$ and tangent to $S$.

Equivalent Descriptions

- Velocity vectors: $T_{x} S=\left\{\gamma^{\prime}(0) \mid \gamma: I \rightarrow S, \gamma(0)=x\right\}$
- Image of the differential: $T_{x} S=\left\{d \varphi_{0}(X) \mid \varphi: U \rightarrow S, \varphi(0)=x\right\}$

The second definition is independent of the choice of parametrisation!


## The Differential

## Definition

Let $f: S \rightarrow S^{\prime}$ be a smooth map. The differential, $d f_{x}$ of $f$ at $x \in S$ is the linear map

$$
\begin{aligned}
d f_{x}: T_{x} S & \rightarrow T_{f(x)} S^{\prime} \\
\gamma^{\prime}(0) & \mapsto(f \circ \gamma)^{\prime}(0) .
\end{aligned}
$$

## Coordinate Description

Let $F(u, v)=\psi^{-1} \circ f \circ \varphi(u, v)=\left(F_{1}(u, v), F_{2}(u, v)\right)$ with $x=f\left(u_{0}, v_{0}\right)$ :

$$
d f_{x}=\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial v}\left(v_{0}, u_{0}\right) & \frac{\partial F_{1}}{\partial v}\left(v_{0}, u_{0}\right) \\
\frac{\partial F_{2}}{\partial u}\left(v_{0}, u_{0}\right) & \frac{\partial F_{2}}{\partial v}\left(v_{0}, u_{0}\right)
\end{array}\right)
$$

## Lecture Seven: Geometry Of Regular Surfaces Export Metric

(1) Lecture Seven: Geometry Of Regular Surfaces

- Smooth maps, differentials and tangent vectors
- Metric
- Geometry of Surfaces


## Metric (First Fundamental Form)

## Definition

The metric $g$ on $S$ is an inner product $g_{x}$ at each point $x \in S$ defined for tangent vectors $V=\gamma^{\prime}(0), W=\mu^{\prime}(0) \in T_{x} S \subseteq \mathbb{R}^{3}$ by

$$
g_{x}(V, W)=\left\langle\gamma^{\prime}(0), \mu^{\prime}(0)\right\rangle_{\mathbb{R}^{3}}
$$

Equivalently

$$
\begin{aligned}
g(V, W)= & \left\langle c_{1} \frac{\partial \varphi}{\partial x_{1}}+c_{2} \frac{\partial \varphi}{\partial x_{2}}, d_{1} \frac{\partial \varphi}{\partial x_{1}}+d_{2} \frac{\partial \varphi}{\partial x_{2}}\right\rangle \\
= & c_{1} d_{1}\left\langle\frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{1}}\right\rangle+c_{2} d_{2}\left\langle\frac{\partial \varphi}{\partial x_{2}}, \frac{\partial \varphi}{\partial x_{2}}\right\rangle \\
& +\left(c_{1} d_{2}+c_{2} d_{1}\right)\left\langle\frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{2}}\right\rangle \\
= & c_{1} d_{1} g_{11}+c_{2} d_{2} g_{22}+\left(c_{1} d_{2}+c_{2} d_{1}\right) g_{12} .
\end{aligned}
$$

## Local Coordinate Expression

$$
g=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right):=\left(\begin{array}{l}
\left\langle\frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{1}}\right\rangle \\
\left\langle\frac{\partial \varphi}{\partial x_{2}}, \frac{\partial \varphi}{\partial x_{1}}\right\rangle
\end{array}\left\langle\frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{2}}\right\rangle\right)
$$

- This expression is only valid in a local coordinate parametrisation $\varphi$.
- The local matrix $\left(g_{i j}\right)$ is positive definite.


## Change of Local Coordinates

- Changing coordinates by $\varphi \mapsto \varphi \circ \tau$ where $\tau: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ leads to the change of coordinates for the metric

$$
\begin{aligned}
g_{a b}^{\varphi \circ \tau} & =\left\langle\partial_{y^{a}}(\varphi \circ \tau), \partial_{y^{b}}(\varphi \circ \tau)\right\rangle=\left\langle\sum_{i} \partial_{x^{i}} \varphi \partial_{y^{a}} \tau^{i}, \sum_{j} \partial_{x^{j}} \varphi \partial_{y^{b}} \tau^{j}\right\rangle \\
& =\sum_{i j} g_{i j} \partial_{y^{a}} \tau^{i} \partial_{y^{b}} \tau^{j}
\end{aligned}
$$

where $\tau=\left(\tau^{1}\left(y^{1}, y^{2}\right), \tau^{2}\left(y^{1}, y^{2}\right)\right)$ and $\varphi=\varphi\left(x^{1}, x^{2}\right)$.

- More concisely,

$$
\begin{aligned}
g^{\varphi \circ \tau}(X, Y) & =\langle d(\varphi \circ \tau) \cdot X, d(\varphi \circ \tau) \cdot Y\rangle \\
& =\langle d \varphi(d \tau \cdot X), d \varphi(d \tau \cdot y)\rangle \\
& =g^{\varphi}(d \tau \cdot X, d \tau \cdot Y) .
\end{aligned}
$$

## More on Coordinate Changes

Let $\varphi: U \rightarrow S$ and $\psi: V \rightarrow S$ be local parametrisations and $\tau=\varphi^{-1} \circ \psi$ the transition map.
Let $X$ be a tangent vector to $S$ so that $X=\gamma^{\prime}(0)$ for some curve $\gamma:(-\epsilon, \epsilon) \rightarrow S \subseteq \mathbb{R}^{3}$.
Define the corresponding (smooth!) curves in the coordinate space:

$$
\gamma_{\varphi}=\varphi^{-1} \circ \gamma, \quad \gamma_{\psi}=\psi^{-1} \circ \gamma
$$

Then we may write uniquely,

$$
\gamma_{\varphi}^{\prime}(0)=X_{\varphi}^{u} e_{u}+X_{\varphi}^{v} e_{v}, \quad \gamma_{\psi}^{\prime}(0)=X_{\psi}^{r} e_{r}+X_{\psi}^{s} e_{s}
$$

## More on Coordinate Changes

Notice that we have

$$
\varphi \circ \gamma_{\varphi}=\varphi \circ\left(\varphi^{-1} \circ \gamma\right)=\gamma, \quad \psi \circ \gamma_{\psi}=\gamma
$$

Then recalling $X=\gamma^{\prime}(0), X_{\varphi}^{u} e_{u}+X_{\varphi}^{v} e_{v}=\gamma_{\varphi}^{\prime}(0)$ :
$d \varphi\left(X_{\varphi}^{u} e_{u}+X_{\varphi}^{v} e_{v}\right)=\left.\partial_{t}\right|_{t=0} \varphi\left(\gamma_{\varphi}(t)\right)=\gamma^{\prime}(0)=X=d \psi\left(X_{\psi}^{u} e_{u}+X_{\psi}^{v} e_{v}\right)$.

Then since $\tau=\psi^{-1} \circ \varphi$, we have $\varphi=\psi \circ \tau$ and hence
$d \psi\left(X_{\psi}^{u} e_{u}+X_{\psi}^{v} e_{v}\right)=X=d \varphi\left(X_{\varphi}^{u} e_{u}+X_{\varphi}^{v} e_{v}\right)=d \psi \cdot d \tau\left(X_{\varphi}^{u} e_{u}+X_{\varphi}^{v} e_{v}\right)$.

But $d \psi$ is injective hence we see how tangent vectors transform under change of coordinates (compare $g^{\varphi \circ \tau}(X, Y)=g^{\varphi}(d \tau \cdot X, d \tau \cdot Y)$ ):

$$
X_{\psi}^{u} e_{u}+X_{\psi}^{v} e_{v}=d \tau\left(X_{\varphi}^{u} e_{u}+X_{\varphi}^{v} e_{v}\right) .
$$

## Lecture Seven: Geometry Of Regular Surfaces export Geometry of Surfaces

(1) Lecture Seven: Geometry Of Regular Surfaces

- Smooth maps, differentials and tangent vectors
- Metric
- Geometry of Surfaces


## Length and Angle of Tangent Vectors

## Definition

Let $X$ be a tangent vector. Then it's length is defined to be

$$
|X|_{g}:=\sqrt{g(X, X)} .
$$

## Definition

The angle, $\theta$ between two tangent vectors $X, Y$ (at the same point $x \in S!$ ) is defined by

$$
\cos \theta=\frac{g(X, Y)}{|X||Y|}=g\left(\frac{X}{|X|}, \frac{Y}{|Y|}\right)
$$

## Cauchy Schwartz Inequality

## Lemma

$$
|g(X, Y)| \leq|X||Y| .
$$

See https://en.wikipedia.org/wiki/Cauchy\�\�\�Schwarz_ inequality\#First_proof
Rearranging Cauchy-Schwarz inequality for $X, Y \neq 0$ gives

$$
\frac{g(X, Y)}{|X||Y|} \in[-1,1]
$$

and $\theta$ is well defined after choosing an inverse arccos.
The simplest is to take $\theta \in[0, \pi]$.

## Arc Length

## Definition

Let $\gamma:(a, b) \rightarrow S$ be a smooth curve. The arc-length of $\gamma$ is

$$
L(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

As for plane and space curves, define the arc length parameter

$$
s(t)=\int_{a}^{t}\left|\gamma^{\prime}(\tau)\right| d \tau
$$

so that $s^{\prime}(t)=\left|\gamma^{\prime}(t)\right|$ is smoothly invertible for regular curves (i.e. with $\left.\gamma^{\prime}(t) \neq 0\right)$.
Then we may parametrisse $\gamma$ by arclength:

$$
\gamma(s)=\gamma(t(s))
$$

satisfying $\left|\gamma^{\prime}\right| \equiv 1$.

## Area

Let

$$
X_{u}=d \varphi\left(e_{u}\right)=\partial_{u} \varphi, \quad X_{v}=d \varphi\left(e_{v}\right)=\partial_{v} \varphi
$$

be coordinate vectors.
Since $d \varphi$ is injective, $X_{u}, X_{v}$ form a basis for $T_{X} M$.
In fact $X_{u}, X_{v}$ determines a parallelogram $X_{u} \wedge X_{v} \subseteq T_{X} M$.
Taking a small rectangle $R=\left\{(u, v) \in\left(u_{0}, u_{0}+\Delta u\right) \times\left(v_{0}, v_{0}+\Delta v\right)\right\}$, we approximate the area of $\varphi(R) \subseteq S$ by

$$
\operatorname{Area}(\varphi(S)) \simeq \operatorname{Area}\left(X_{u} \wedge X_{v}\right)=\left|X_{u} \times X_{v}\right| \operatorname{Area}(R)=\left|X_{u} \times X_{v}\right| \Delta u \Delta v
$$

Note that $\left|X_{u} \times X_{v}\right|^{2}=\operatorname{det} \lambda^{T} \lambda=\operatorname{det} g$ where $\lambda=\left(\begin{array}{ll}X_{u} & X_{v}\end{array}\right)$ ! Area is the limit of a Riemann sum: for any region $\Omega=\varphi(W) \subseteq \varphi(U)$

$$
\operatorname{Area}(\Omega)=\int_{W} \sqrt{\operatorname{det} g(u, v)} d u d v
$$

## Intrinsic Geometry

- Notice that thinking of $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ we have

$$
g\left(\gamma^{\prime}(0), \gamma^{\prime}(0)\right)=\left\langle\gamma^{\prime}(0), \gamma^{\prime}(0)\right\rangle_{\mathbb{R}^{3}}
$$

so that the length of tangent vectors and hence the length of curves is precisely the lengths obtained in $\mathbb{R}^{3}$.

- Similar for angles and for area in terms of $X_{u}, X_{v}$.
- The point is that, if we know $g$, we may do geometry on $S$ without any reference to how it sits in $\mathbb{R}^{3}$ ! This is intrinsic geometry.
- But what exactly is the definition of $g$ if we don't refer to $\mathbb{R}^{3}$ ?

At this point, the best we can do is say that $g$ is determined by a collection of smooth, matrix valued maps $(u, v) \in U \mapsto\left(g_{i j}(u, v)\right)$ in each local parametrisation that are symmetric and positive definite at each point $(u, v)$. We also require that under a change of coordinates, $\tau$ we have

$$
g_{a b}^{\varphi \circ \tau}=\sum_{i j} g_{i j}^{\varphi} \partial_{y^{\mathrm{a}}} \tau^{i} \partial_{y^{b}} \tau^{j}
$$

