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Length and Angle of Tangent Vectors

Definition
Let X be a tangent vector. Then it’s length is defined to be

|X |g :=
√

g(X ,X ).

Definition
The angle, θ between two tangent vectors X ,Y (at the same point
x ∈ S!) is defined by

cos θ =
g(X ,Y )

|X | |Y |
= g

(
X
|X |

,
Y
|Y |

)
.

.
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Cauchy Schwartz Inequality

Lemma

|g(X ,Y )| ≤ |X | |Y | .

See https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_
inequality#First_proof
Rearranging Cauchy-Schwarz inequality for X ,Y 6= 0 gives

g(X ,Y )

|X | |Y |
∈ [−1, 1]

and θ is well defined after choosing an inverse arccos.
The simplest is to take θ ∈ [0, π].
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Arc Length
Definition
Let γ : (a, b) → S be a smooth curve. The arc-length of γ is

L(γ) =
∫ b

a

∣∣γ′(t)∣∣ dt.

As for plane and space curves, define the arc length parameter

s(t) =
∫ t

a

∣∣γ′(τ)∣∣ dτ

so that s ′(t) = |γ′(t)| is smoothly invertible for regular curves (i.e. with
γ′(t) 6= 0).
Then we may parametrisse γ by arclength:

γ(s) = γ(t(s))

satisfying |γ′| ≡ 1.
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Area
Let

Xu = dϕ(eu) = ∂uϕ, Xv = dϕ(ev ) = ∂vϕ

be coordinate vectors.
Since dϕ is injective, Xu,Xv form a basis for TxM.
In fact Xu,Xv determines a parallelogram Xu ∧ Xv ⊆ TxM.
Taking a small rectangle R = {(u, v) ∈ (u0, u0 +∆u)× (v0, v0 +∆v)}, we
approximate the area of ϕ(R) ⊆ S by

Area(ϕ(S)) ' Area(Xu ∧ Xv ) = |Xu × Xv |Area(R) = |Xu × Xv |∆u∆v .

Note that |Xu × Xv |2 = detλTλ = det g where λ = (Xu Xv )!
Area is the limit of a Riemann sum: for any region Ω = ϕ(W ) ⊆ ϕ(U)

Area(Ω) =
∫

W

√
det g(u, v)dudv .
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Intrinsic Geometry
Notice that thinking of γ : (a, b) → R3 we have

g(γ′(0), γ′(0)) =
〈
γ′(0), γ′(0)

〉
R3

so that the length of tangent vectors and hence the length of curves
is precisely the lengths obtained in R3.
Similar for angles and for area in terms of Xu,Xv .
The point is that, if we know g , we may do geometry on S without
any reference to how it sits in R3! This is intrinsic geometry.
But what exactly is the definition of g if we don’t refer to R3?

At this point, the best we can do is say that g is determined by a collection
of smooth, matrix valued maps (u, v) ∈ U 7→ (gij(u, v)) in each local
parametrisation that are symmetric and positive definite at each point
(u, v). We also require that under a change of coordinates, τ we have

gϕ◦τ
ab =

∑
ij

gϕ
ij ∂yaτ i∂ybτ j .
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Orientation of Euclidean Space

Definition
An orientation on Rn is an equivalence class of ordered bases
E = (e1, · · · , en) where E ∼ F if the change of basis matrix AEF has
positive determinant.

Since det (AEFAFG) = det (AEF ) det (AFG), we do indeed have an
equivalence relation, and there are precisely two equivalence classes.

Example
Compute the change of basis from E = (e1, e2) to
(e1, e1 + e2), (e1,−e2), (e2, e1).

Example
Right hand orientation: (e1, e2, e3), (e1, e3,−e2), . . .
Left hand orientation: (e2, e1, e3), (e1,−e2, e3), . . .
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Orientation preserving and reversing linear maps
Choose an orientation O = {e1, · · · , en} on Rn.

Definition
An invertible linear map T : Rn → Rn is orientation preserving if
T (O) = O. That is, if

det
(
T (e1), · · · ,T (en)

)
= det

(
e1, · · · , en

)
or equivalently if detT > 0.

Example

Preserving: T =

(
1 0
0 1

)
, T =

(
1 1
1 0

)
, T =

(
2 1
3 5

)
.

Reversing: T =

(
1 0
0 −1

)
, T =

(
0 1
1 0

)
, T =

(
2 1
3 1

)
.
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Orientation of the tangent plane

Tangent Plane Orientations

Local parametrisation: ϕ : U → S.(
∂ϕ

∂u ,
∂ϕ

∂v

)
,

(
∂ϕ

∂v ,
∂ϕ

∂u

)

Definition
The orientation induced by ϕ is compatible with the orientation induced
by ψ if det d(ψ ◦ φ−1) > 0. A regular surface, S is orientable if there is a
cover ϕα : Uα → S such that det(ταβ) > 0 for all α, β.
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Examples

The sphere is orientable
The Möbius strip is not orientable
Graphs, are orientable
Inverse images of regular point are orientable: here F : R3 → R,
S = F−1(0) where dFx has maximal rank (i.e. rank 1) for all p ∈ R3

such that F (p) = 0.

Paul Bryan MATH704 Differential Geometry 13 / 21



Orientation of surfaces
Theorem
A surface S is orientable if and only if there is a differentiable field, N of
unit normal vectors. That is, if and only there exists a differentiable map
N : S → R3 such that |N(x)| = 1 for all x ∈ S and such that N(x) ⊥ X
for all X ∈ TxS.

Remember there are precisely two orientations!
There are two possible unit normal fields, N and −N. Choosing an
orientation is equivalent to choosing a normal field.

The proof of the theorem follows from the following lemma:

Lemma
Let ϕ(u, v) : U ⊆ R2 → S and ψ(s, t) : V ⊆ R2 → S be local
parametrisations. Then

∂uϕ× ∂vϕ =
[
det d(ψ−1 ◦ ϕ)

]
∂sψ × ∂tψ.
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Gauss Map

Definition
An orientable surface S along with a choice of orientation is called an
oriented surface.

Definition
Let S be an oriented surface. The Gauss Map is the unit normal map

x ∈ S 7→ N(x) ∈ S2 = {X ∈ R3 : ‖X‖ = 1}.

With respect to a local parametrisation

N =
∂uϕ× ∂vϕ

|∂uϕ× ∂vϕ|
.
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Examples

Sphere:

S = {x2 + y2 + z2 = 1}, N(p) = p

Graph:

S = {(x , y , f (x , y))}, N(x , y , f (x)) = 1√
1 + f 2

x + f 2
y

(−fx ,−fy , 1).

Inverse image of regular point

S = {F−1(c)}, N(p) = ∇F (p)
|∇F (p)| .
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Weingarten Shape Operator

Definition
The Weingarten or Shape Operator at p ∈ S is the linear map

W = −dNp : TpS → TpS.

Note that N : S → S2 so that dNp : TpS → TN(p)S2. By definition

N(p) ⊥ TpS

But on the sphere, NS2(z) = z and hence (with z = N(p))

N(p) ⊥ TN(p)S2.

Therefore, TN(p)S2 is a plane parallel to TpS so we may identify these
planes to obtain dNp : TpS → TN(p))S2 ' TpS.
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Examples

Plane

S = {ax + by + cz = 0}

N(p) = (a, b, c)

dNp ≡ 0

Sphere

S = S2 = {x2 + y2 + z2 = 1}

N(p) = p

dNp = Id .
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Examples
Cylinder

C = {x2 + y2 = 1,−1 < z < 1}

N(p) = π(x ,y)(p) : N(x , y , z) = (x , y , 0).

dNp = πx ,y

Tangent vectors at p = (cos θ, sin θ, z0):

X = (− sin θ, cos θ, 0), Y = (0, 0, 1)

dNpX =
d
dt

∣∣∣∣
t=0

N(cos(θ + t), sin(θ + t), z) = X

dNpY =
d
dt

∣∣∣∣
t=0

N(cos θ, sin θ, z + t) = 0.
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Interpretation of W

Curvature of a plane curve

κ = 〈∂sT ,N〉 = −〈T , ∂sN〉 = −dN(T ).

Measures the change of T , or equivalently, N along the curve.

Curvature of a surface
For surfaces TpS is two-dimensional.
W(V ) = −dN(V ) measures change of N in the direction V :
Let γ be a curve with γ(0) = p, and V = γ′(0). Then

dNp(V ) = ∂t |t=0N(γ(t)) = deviation of N along the curve γ.

Thus dN is measures how the surface is curved in two-dimensions.
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