MATH704 Differential Geometry

Macquarie University, Semester 22018

Paul Bryan

Lecture Eight: Geometry And Curvature Of Regular Surfaces

(1) Lecture Eight: Geometry And Curvature Of Regular Surfaces

- Geometry Of Surfaces
- Orientation And The Gauss Map
- Curvature

Lecture Eight: Geometry And Curvature Of Regular Surfaces - Geometry Of Surfaces

(1) Lecture Eight: Geometry And Curvature Of Regular Surfaces

- Geometry Of Surfaces
- Orientation And The Gauss Map
- Curvature

Length and Angle of Tangent Vectors

Definition

Let X be a tangent vector. Then it's length is defined to be

$$
|X|_{g}:=\sqrt{g(X, X)} .
$$

Definition

The angle, θ between two tangent vectors X, Y (at the same point $x \in S!$) is defined by

$$
\cos \theta=\frac{g(X, Y)}{|X||Y|}=g\left(\frac{X}{|X|}, \frac{Y}{|Y|}\right)
$$

Cauchy Schwartz Inequality

Lemma

$$
|g(X, Y)| \leq|X||Y| .
$$

See https://en.wikipedia.org/wiki/Cauchy\�\�\�Schwarz_ inequality\#First_proof
Rearranging Cauchy-Schwarz inequality for $X, Y \neq 0$ gives

$$
\frac{g(X, Y)}{|X||Y|} \in[-1,1]
$$

and θ is well defined after choosing an inverse arccos.
The simplest is to take $\theta \in[0, \pi]$.

Arc Length

Definition

Let $\gamma:(a, b) \rightarrow S$ be a smooth curve. The arc-length of γ is

$$
L(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

As for plane and space curves, define the arc length parameter

$$
s(t)=\int_{a}^{t}\left|\gamma^{\prime}(\tau)\right| d \tau
$$

so that $s^{\prime}(t)=\left|\gamma^{\prime}(t)\right|$ is smoothly invertible for regular curves (i.e. with $\left.\gamma^{\prime}(t) \neq 0\right)$.
Then we may parametrisse γ by arclength:

$$
\gamma(s)=\gamma(t(s))
$$

satisfying $\left|\gamma^{\prime}\right| \equiv 1$.

Area

Let

$$
X_{u}=d \varphi\left(e_{u}\right)=\partial_{u} \varphi, \quad X_{v}=d \varphi\left(e_{v}\right)=\partial_{v} \varphi
$$

be coordinate vectors.
Since $d \varphi$ is injective, X_{u}, X_{v} form a basis for $T_{X} M$.
In fact X_{u}, X_{v} determines a parallelogram $X_{u} \wedge X_{v} \subseteq T_{X} M$.
Taking a small rectangle $R=\left\{(u, v) \in\left(u_{0}, u_{0}+\Delta u\right) \times\left(v_{0}, v_{0}+\Delta v\right)\right\}$, we approximate the area of $\varphi(R) \subseteq S$ by

$$
\operatorname{Area}(\varphi(S)) \simeq \operatorname{Area}\left(X_{u} \wedge X_{v}\right)=\left|X_{u} \times X_{v}\right| \operatorname{Area}(R)=\left|X_{u} \times X_{v}\right| \Delta u \Delta v
$$

Note that $\left|X_{u} \times X_{v}\right|^{2}=\operatorname{det} \lambda^{T} \lambda=\operatorname{det} g$ where $\lambda=\left(\begin{array}{ll}X_{u} & X_{v}\end{array}\right)$! Area is the limit of a Riemann sum: for any region $\Omega=\varphi(W) \subseteq \varphi(U)$

$$
\operatorname{Area}(\Omega)=\int_{W} \sqrt{\operatorname{det} g(u, v)} d u d v
$$

Intrinsic Geometry

- Notice that thinking of $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ we have

$$
g\left(\gamma^{\prime}(0), \gamma^{\prime}(0)\right)=\left\langle\gamma^{\prime}(0), \gamma^{\prime}(0)\right\rangle_{\mathbb{R}^{3}}
$$

so that the length of tangent vectors and hence the length of curves is precisely the lengths obtained in \mathbb{R}^{3}.

- Similar for angles and for area in terms of X_{u}, X_{v}.
- The point is that, if we know g, we may do geometry on S without any reference to how it sits in \mathbb{R}^{3} ! This is intrinsic geometry.
- But what exactly is the definition of g if we don't refer to \mathbb{R}^{3} ?

At this point, the best we can do is say that g is determined by a collection of smooth, matrix valued maps $(u, v) \in U \mapsto\left(g_{i j}(u, v)\right)$ in each local parametrisation that are symmetric and positive definite at each point (u, v). We also require that under a change of coordinates, τ we have

$$
g_{a b}^{\varphi \circ \tau}=\sum_{i j} g_{i j}^{\varphi} \partial_{y^{\mathrm{a}}} \tau^{i} \partial_{y^{b}} \tau^{j}
$$

Lecture Eight: Geometry And Curvature Of Regular Surfaces - Orientation And The Gauss Map

(1) Lecture Eight: Geometry And Curvature Of Regular Surfaces

- Geometry Of Surfaces
- Orientation And The Gauss Map
- Curvature

Orientation of Euclidean Space

Definition

An orientation on \mathbb{R}^{n} is an equivalence class of ordered bases $\mathcal{E}=\left(e_{1}, \cdots, e_{n}\right)$ where $\mathcal{E} \sim \mathcal{F}$ if the change of basis matrix $A_{\mathcal{E F}}$ has positive determinant.

Since $\operatorname{det}\left(A_{\mathcal{E F}} A_{\mathcal{F G}}\right)=\operatorname{det}\left(A_{\mathcal{E F}}\right) \operatorname{det}\left(A_{\mathcal{F G}}\right)$, we do indeed have an equivalence relation, and there are precisely two equivalence classes.

Example

Compute the change of basis from $\mathcal{E}=\left(e_{1}, e_{2}\right)$ to $\left(e_{1}, e_{1}+e_{2}\right), \quad\left(e_{1},-e_{2}\right), \quad\left(e_{2}, e_{1}\right)$.

Example

Right hand orientation: $\left(e_{1}, e_{2}, e_{3}\right),\left(e_{1}, e_{3},-e_{2}\right), \ldots$
Left hand orientation: $\left(e_{2}, e_{1}, e_{3}\right),\left(e_{1},-e_{2}, e_{3}\right), \ldots$

Orientation preserving and reversing linear maps
Choose an orientation $\mathcal{O}=\left\{e_{1}, \cdots, e_{n}\right\}$ on \mathbb{R}^{n}.

Definition

An invertible linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orientation preserving if $T(\mathcal{O})=\mathcal{O}$. That is, if

$$
\operatorname{det}\left(T\left(e_{1}\right), \cdots, T\left(e_{n}\right)\right)=\operatorname{det}\left(e_{1}, \cdots, e_{n}\right)
$$

or equivalently if $\operatorname{det} T>0$.

Example

Preserving: $\quad T=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad T=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right), \quad T=\left(\begin{array}{ll}2 & 1 \\ 3 & 5\end{array}\right)$.
Reversing: $\quad T=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad T=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad T=\left(\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right)$.

Orientation of the tangent plane

Tangent Plane Orientations

Local parametrisation: $\varphi: U \rightarrow S$.

$$
\left(\frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v}\right), \quad\left(\frac{\partial \varphi}{\partial v}, \frac{\partial \varphi}{\partial u}\right)
$$

Definition

The orientation induced by φ is compatible with the orientation induced by ψ if $\operatorname{det} d\left(\psi \circ \phi^{-1}\right)>0$. A regular surface, S is orientable if there is a cover $\varphi_{\alpha}: U_{\alpha} \rightarrow S$ such that $\operatorname{det}\left(\tau_{\alpha \beta}\right)>0$ for all α, β.

Examples

- The sphere is orientable
- The Möbius strip is not orientable
- Graphs, are orientable
- Inverse images of regular point are orientable: here $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$, $S=F^{-1}(0)$ where $d F_{X}$ has maximal rank (i.e. rank 1) for all $p \in \mathbb{R}^{3}$ such that $F(p)=0$.

Orientation of surfaces

Theorem

A surface S is orientable if and only if there is a differentiable field, N of unit normal vectors. That is, if and only there exists a differentiable map $N: S \rightarrow \mathbb{R}^{3}$ such that $|N(x)|=1$ for all $x \in S$ and such that $N(x) \perp X$ for all $X \in T_{x} S$.

Remember there are precisely two orientations!
There are two possible unit normal fields, N and $-N$. Choosing an orientation is equivalent to choosing a normal field.

- The proof of the theorem follows from the following lemma:

Lemma

Let $\varphi(u, v): U \subseteq \mathbb{R}^{2} \rightarrow S$ and $\psi(s, t): V \subseteq \mathbb{R}^{2} \rightarrow S$ be local parametrisations. Then

$$
\partial_{u} \varphi \times \partial_{v} \varphi=\left[\operatorname{det} d\left(\psi^{-1} \circ \varphi\right)\right] \partial_{s} \psi \times \partial_{t} \psi
$$

Gauss Map

Definition

An orientable surface S along with a choice of orientation is called an oriented surface.

Definition

Let S be an oriented surface. The Gauss Map is the unit normal map

$$
x \in S \mapsto N(x) \in \mathbb{S}^{2}=\left\{X \in \mathbb{R}^{3}:\|X\|=1\right\}
$$

With respect to a local parametrisation

$$
N=\frac{\partial_{u} \varphi \times \partial_{v} \varphi}{\left|\partial_{u} \varphi \times \partial_{v} \varphi\right|}
$$

Examples

Sphere:

$$
S=\left\{x^{2}+y^{2}+z^{2}=1\right\}, \quad N(p)=p
$$

Graph:

$$
S=\{(x, y, f(x, y))\}, \quad N(x, y, f(x))=\frac{1}{\sqrt{1+f_{x}^{2}+f_{y}^{2}}}\left(-f_{x},-f_{y}, 1\right) .
$$

Inverse image of regular point

$$
S=\left\{F^{-1}(c)\right\}, \quad N(p)=\frac{\nabla F(p)}{|\nabla F(p)|} .
$$

Lecture Eight: Geometry And Curvature Of Regular Surfaces - Curvature

(1) Lecture Eight: Geometry And Curvature Of Regular Surfaces

- Geometry Of Surfaces
- Orientation And The Gauss Map
- Curvature

Weingarten Shape Operator

Definition

The Weingarten or Shape Operator at $p \in S$ is the linear map

$$
\mathcal{W}=-d N_{p}: T_{p} S \rightarrow T_{p} S
$$

Note that $N: S \rightarrow \mathbb{S}^{2}$ so that $d N_{p}: T_{p} S \rightarrow T_{N(p)} \mathbb{S}^{2}$. By definition

$$
N(p) \perp T_{p} S
$$

But on the sphere, $N_{\mathbb{S}^{2}}(z)=z$ and hence (with $z=N(p)$)

$$
N(p) \perp T_{N(p)} \mathbb{S}^{2}
$$

Therefore, $T_{N(p)} \mathbb{S}^{2}$ is a plane parallel to $T_{p} S$ so we may identify these planes to obtain $d N_{p}: T_{p} S \rightarrow T_{N(p))} \mathbb{S}^{2} \simeq T_{p} S$.

Examples

Plane

$$
\begin{gathered}
S=\{a x+b y+c z=0\} \\
N(p)=(a, b, c) \\
d N_{p} \equiv 0
\end{gathered}
$$

Sphere

$$
\begin{aligned}
S=\mathbb{S}^{2}= & \left\{x^{2}+y^{2}+z^{2}=1\right\} \\
& N(p)=p \\
& d N_{p}=\mathrm{Id}
\end{aligned}
$$

Examples

Cylinder

$$
\begin{gathered}
C=\left\{x^{2}+y^{2}=1,-1<z<1\right\} \\
N(p)=\pi_{(x, y)}(p): N(x, y, z)=(x, y, 0) \\
d N_{p}=\pi_{x, y}
\end{gathered}
$$

Tangent vectors at $p=\left(\cos \theta, \sin \theta, z_{0}\right)$:

$$
X=(-\sin \theta, \cos \theta, 0), \quad Y=(0,0,1)
$$

$$
\begin{aligned}
& d N_{p} X=\left.\frac{d}{d t}\right|_{t=0} N(\cos (\theta+t), \sin (\theta+t), z)=X \\
& d N_{p} Y=\left.\frac{d}{d t}\right|_{t=0} N(\cos \theta, \sin \theta, z+t)=0
\end{aligned}
$$

Interpretation of \mathcal{W}

Curvature of a plane curve

$$
\kappa=\left\langle\partial_{s} T, N\right\rangle=-\left\langle T, \partial_{s} N\right\rangle=-d N(T) .
$$

Measures the change of T, or equivalently, N along the curve.

Curvature of a surface

- For surfaces $T_{p} S$ is two-dimensional.
- $\mathcal{W}(V)=-d N(V)$ measures change of N in the direction V : Let γ be a curve with $\gamma(0)=p$, and $V=\gamma^{\prime}(0)$. Then

$$
d N_{p}(V)=\left.\partial_{t}\right|_{t=0} N(\gamma(t))=\text { deviation of } N \text { along the curve } \gamma .
$$

- Thus $d N$ is measures how the surface is curved in two-dimensions.

