MATH704 Differential Geometry

Macquarie University, Semester 22018

Paul Bryan

Lecture Nine: Curvature Of Regular Surfaces

(1) Lecture Nine: Curvature Of Regular Surfaces

- Geodesic and Normal Curvature
- Curvature and the Second Fundamental Form
- Principal, Mean and Gauss Curvatures
- Appendix: Symmetric bilinear forms

Lecture Nine: Curvature Of Regular Surfaces - Geodesic and Normal Curvature

(1) Lecture Nine: Curvature Of Regular Surfaces

- Geodesic and Normal Curvature
- Curvature and the Second Fundamental Form
- Principal, Mean and Gauss Curvatures
- Appendix: Symmetric bilinear forms

Geodesic and normal Curvature

- Let $\gamma: I \rightarrow S$ be a curve on $S, p=\gamma(0), V=\gamma^{\prime}(0) \in T_{p} S$.
- Note: The normal (in \mathbb{R}^{3}) $n_{\mathbb{R}^{3}}$ to γ may be tangent to S, or may be normal to S, or some linear combination thereof.
- As a curve in \mathbb{R}^{3}, γ may have curvature, $\kappa_{\mathbb{R}^{3}} \neq 0$ simply because S has curvature!

Definition

The normal curvature of γ is the part of the curvature normal to S :

$$
\kappa_{N}=\left\langle\kappa n_{\mathbb{R}^{3}}, N\right\rangle .
$$

The geodesic curvature vector, $\vec{\kappa}_{S}$ (along S) is the projection of the curvature vector $\vec{\kappa}_{\mathbb{R}^{3}}=\kappa_{\mathbb{R}^{3}} n_{\mathbb{R}^{3}}$ onto the tangent plane:

$$
\vec{\kappa}_{S}=\pi_{T_{p} S}\left(\kappa_{\mathbb{R}^{3}} n_{\mathbb{R}^{3}}\right)=\kappa_{\mathbb{R}^{3}} n_{\mathbb{R}^{3}}-\left\langle\kappa_{\mathbb{R}^{3}} n_{\mathbb{R}^{3}}, N\right\rangle N .
$$

Let $n_{S} \in T_{p} S$ be such that $n_{S} \perp \gamma^{\prime}(0)$ and $\left(\gamma^{\prime}(0), n_{S}\right)$ has positive orientation. The geodesic curvature is $\kappa_{S}=\left\langle\vec{\kappa}_{S}, n_{S}\right\rangle$ (has a sign!).

Example

Cylinder: $C=\left\{x^{2}+y^{2}=1,-1<z<1\right\}, \quad N(x, y, z)=(x, y, 0)$.

$$
\begin{aligned}
\gamma(t) & =\left(\cos t, \sin t, z_{0}\right) \\
\gamma^{\prime}(t) & =(-\sin t, \cos t, 0) \\
\gamma^{\prime \prime}(t) & =(-\cos t,-\sin , 0) \\
N(\gamma(t)) & =(\cos t, \sin t, 0) \\
n_{S}(\gamma(t)) & =(0,0,1) \\
\kappa_{\mathbb{R}^{3}} & =\kappa_{N}=1, \kappa_{S}=0 .
\end{aligned}
$$

- Check the orientation!

$$
\left(\gamma^{\prime}, n_{S}, N\right)
$$

Example

Cylinder: $C=\left\{x^{2}+y^{2}=1,-1<z<1\right\}, \quad N(x, y, z)=(x, y, 0)$.

$$
\begin{aligned}
\gamma(t) & =(1,0, t) \\
\gamma^{\prime}(t) & =(0,0,1) \\
\gamma^{\prime \prime}(t) & =(0,0,0) \\
N(\gamma(t)) & =(1,0,0) \\
n_{S}(\gamma(t)) & =(0,-1,0) \\
\kappa_{\mathbb{R}^{3}} & =\kappa_{N}=\kappa_{S}=0 .
\end{aligned}
$$

Example

Cylinder: $C=\left\{x^{2}+y^{2}=1,-1<z<1\right\}, \quad N(x, y, z)=(x, y, 0)$.

$$
\begin{aligned}
\gamma(t) & =(\cos t, \sin t, t) \\
\gamma^{\prime}(t) & =(-\sin t, \cos t, 1) \\
\gamma^{\prime \prime}(t) & =(-\cos t,-\sin , 0) \\
N(\gamma(t)) & =(\cos t, \sin t, 0) \\
n_{S}(\gamma(t)) & =\frac{1}{\sqrt{2}}(\sin t,-\cos t, 1) \\
\kappa_{\mathbb{R}^{3}} & =\kappa_{N}=1, \kappa_{S}=0
\end{aligned}
$$

Example

Cylinder: $C=\left\{x^{2}+y^{2}=1,-1<z<1\right\}, \quad N(x, y, z)=(x, y, 0)$.

$$
\begin{aligned}
\gamma(t) & =(\cos (\cos t), \sin (\cos t), \sin t) \\
\gamma^{\prime}(t) & =(\sin (\sin t) \cos t,-\cos (\cos t) \sin t, \cos t) \\
\gamma^{\prime \prime}(t) & =\left(-\cos (\cos t) \sin ^{2} t,-\sin (\cos t) \sin ^{2} t,-\sin t\right) \\
N(\gamma(t)) & =(\cos (\cos t), \sin (\cos t), 0) \\
n_{S}(\gamma(t)) & =?
\end{aligned}
$$

$$
\kappa_{\mathbb{R}^{3}}=\kappa_{N}=?, \kappa_{S}=1
$$

- How do I know $\kappa_{S}=1$?
- You have to wait to find out!

Example

$$
\begin{aligned}
\kappa_{\mathbb{R}^{3}}= & \frac{1}{\left(|\cos (\cos (t)) \sin (t)|^{2}+|\sin (t) \sin (\cos (t))|^{2}+|\cos (t)|^{2}\right)^{\frac{3}{2}}} \times \\
& \sqrt{ } \mid-\left(\cos (\cos (t)) \sin (t)^{2}-\cos (t) \sin (\cos (t))\right) \cos (\cos (t)) \sin (t) \\
& -\left.\left(\sin (t)^{2} \sin (\cos (t))+\cos (t) \cos (\cos (t))\right) \sin (t) \sin (\cos (t))\right|^{2} \\
& +\mid \cos (\cos (t)) \sin (t)^{2} \\
& +\left.\left(\sin (t)^{2} \sin (\cos (t))+\cos (t) \cos (\cos (t))\right) \cos (t)\right|^{2} \\
& +\mid \sin (t)^{2} \sin (\cos (t)) \\
& -\left.\left(\cos (\cos (t)) \sin (t)^{2}-\cos (t) \sin (\cos (t))\right) \cos (t)\right|^{2}
\end{aligned}
$$

Lecture Nine: Curvature Of Regular Surfaces - Curvature and the Second Fundamental Form

(1) Lecture Nine: Curvature Of Regular Surfaces

- Geodesic and Normal Curvature
- Curvature and the Second Fundamental Form
- Principal, Mean and Gauss Curvatures
- Appendix: Symmetric bilinear forms

Dependence of normal curvature on direction

Theorem
Let $\gamma, \sigma: I \rightarrow S$ with $\gamma\left(t_{0}\right)=\sigma\left(t_{0}\right)$ and $\gamma^{\prime}\left(t_{0}\right)=\sigma^{\prime}\left(t_{0}\right)$ for some $t_{0} \in I$.
Then

$$
\kappa_{N}(\gamma)\left(t_{0}\right)=\kappa_{N}(\sigma)\left(t_{0}\right)
$$

That is, the normal curvature κ_{N} depends only the tangent vector $V=\gamma^{\prime}\left(t_{0}\right)=\sigma^{\prime}\left(t_{0}\right)$ at the point $p=\gamma\left(t_{0}\right)=\sigma\left(t_{0}\right)$.

Note: Both $\kappa_{\mathbb{R}^{3}}$ and κ_{S} also depend on $\gamma^{\prime \prime}\left(t_{0}\right)$ (resp. $\left.\sigma^{\prime \prime}\left(t_{0}\right)\right)$ and so will in general differ for γ and σ if $\gamma^{\prime \prime}\left(t_{0}\right) \neq \sigma^{\prime \prime}\left(t_{0}\right)$.
Thus κ_{N} measures the curvature of S itself in the direction V independently of the choice of curve γ, σ.
Whereas κ_{S} measures the "left-over" curvature of γ after removing the curvature of S itself.

Proof of Theorem

We will show that

$$
\kappa_{N}=-\left\langle d N\left(\gamma^{\prime}\right), \gamma^{\prime}\right\rangle
$$

Let γ be parametrised by arc-length, s. Then

$$
\kappa_{\mathbb{R}^{3}} n_{\mathbb{R}^{3}}=\gamma^{\prime \prime}
$$

Therefore,

$$
\kappa_{N}=\left\langle\kappa_{\mathbb{R}^{3}} n_{\mathbb{R}^{3}}, N\right\rangle=\left\langle\gamma^{\prime \prime}, N\right\rangle
$$

On the other hand, since $\left\langle\gamma^{\prime}, N\right\rangle=0$ we have

$$
0=\partial_{s}\left\langle\gamma^{\prime}, N\right\rangle=\left\langle\gamma^{\prime \prime}, N\right\rangle+\left\langle\gamma^{\prime}, d N\left(\gamma^{\prime}\right)\right\rangle
$$

Hence,

$$
\kappa_{N}=\left\langle\gamma^{\prime \prime}, N\right\rangle=-\left\langle\gamma^{\prime}, d N\left(\gamma^{\prime}\right)\right\rangle .
$$

The Second Fundamental Form

Definition

The second fundamental form, or extrinsic curvature of S is defined to be

$$
A(X, Y)=g(\mathcal{W}(X), Y)=\langle\mathcal{W}(X), Y\rangle=\langle-d N(X), Y\rangle
$$

for X, Y tangent vectors to S.
Classically, the second fundamental form is the quadratic form:

$$
\mathrm{II}(\mathrm{X})=\mathrm{A}(\mathrm{X}, \mathrm{X})
$$

The theorem shows that for any curve γ on S parametrised by arc length,

$$
\kappa_{N}=\left\langle-d N\left(\gamma^{\prime}\right), \gamma^{\prime}\right\rangle=A\left(\gamma^{\prime}, \gamma^{\prime}\right)=\operatorname{II}\left(\gamma^{\prime}\right) .
$$

More generally

$$
\kappa_{N}=\frac{\operatorname{II}\left(\gamma^{\prime}\right)}{\left|\gamma^{\prime}\right|^{2}}=\frac{A\left(\gamma^{\prime}, \gamma^{\prime}\right)}{g\left(\gamma^{\prime}, \gamma^{\prime}\right)}=A\left(\frac{\gamma^{\prime}}{\left|\gamma^{\prime}\right|}, \frac{\gamma^{\prime}}{\left|\gamma^{\prime}\right|}\right) .
$$

Spheres

Radius 1: $\mathbb{S}^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\}$
Choose $N(p)=-p$ (inward pointing). Then $d N_{p}(X)=-X$ and

$$
A(X, Y)=\langle-d N(X), Y\rangle=\langle X, Y\rangle=g(X, Y)
$$

Radius $r: \mathbb{S}^{2}(r)=\left\{x^{2}+y^{2}+z^{2}=r^{2}\right\}$
Choose $N(p)=-\frac{1}{r} p$ Then $d N_{p}(X)=-\frac{1}{r} X$ and

$$
A(X, Y)=\langle-d N(X), Y\rangle=\frac{1}{r}\langle X, Y\rangle=\frac{1}{r} g(X, Y)
$$

Equators (Great Circles)
$\gamma(\theta)=(r \cos (\theta), r \sin (\theta), 0): \kappa_{\mathbb{R}^{3}}=\kappa_{N}=\frac{1}{r}$.
$A\left(\gamma^{\prime}, \gamma^{\prime}\right)=\frac{1}{r} g\left(\gamma^{\prime}, \gamma^{\prime}\right)=\frac{1}{r} r^{2}=r \neq \kappa_{N} ? ? ? ? ?$
$A\left(\gamma^{\prime}, \gamma^{\prime}\right)=\left|\gamma^{\prime}\right|^{2} \kappa_{N}-$ not arc-length!

Symmetry

Theorem

The second fundamental form is symmetric: $A(X, Y)=A(Y, X)$.
Equivalently, the Weingarten shape operator is self-adjoint with respect to $g: g(\mathcal{W}(X), Y)=g(X, \mathcal{W}(Y))$.

Proof.

Recall $A(X, Y)=-\langle d N(X), Y\rangle$.
Let $\gamma(s) \in S$ be a curve with $\gamma^{\prime}(0)=X$.
Then since $\langle N(\gamma(s)), Y(\gamma(s))\rangle=0$ we have,

$$
\begin{aligned}
0 & =\partial_{s}\langle N(\gamma(s)), Y(\gamma(s))\rangle \\
& =\left\langle d N\left(\gamma^{\prime}\right), Y\right\rangle+\left\langle N, d Y\left(\gamma^{\prime}\right)\right\rangle \\
& =\langle d N(X), Y\rangle+\langle N, d Y(X)\rangle
\end{aligned}
$$

Likewise $0=\langle d N(Y), X\rangle+\langle N, d X(Y)\rangle$.

Symmetry (proof continued)

Proof.

Thus $A(X, Y)=-\langle d N(X), Y\rangle=\langle N, d Y(X)\rangle$ and $A(Y, X)=\langle N, d X(Y)\rangle$.
The required result is equivalent to the statement that $d X(Y)-d Y(X)$ is tangential, since then

$$
A(X, Y)-A(Y, X)=\langle N, d Y(X)-d X(Y)\rangle=0
$$

Let's take the case, $X=\partial_{u} \varphi, Y=\partial_{v} \varphi$ in a local parametrisation φ : In this case,

$$
\langle N, d X(Y)\rangle=\left\langle N, \partial_{v} \partial_{u} \varphi\right\rangle=\left\langle N, \partial_{u} \partial_{v} \varphi\right\rangle=\langle N, d Y(X)\rangle
$$

The general result follows by bi-linearity of A and that $\left\{\partial_{\mu} \varphi, \partial_{\nu} \varphi\right\}$ is a basis so any X, Y are linear combinations of them. exercise!

Lecture Nine: Curvature Of Regular Surfaces - Principal, Mean and Gauss Curvatures
(1) Lecture Nine: Curvature Of Regular Surfaces

- Geodesic and Normal Curvature
- Curvature and the Second Fundamental Form
- Principal, Mean and Gauss Curvatures
- Appendix: Symmetric bilinear forms

Principal curvatures and Principal Directions

Definition

The principal curvatures κ_{1}, κ_{2} are the eigenvalues of the Weingarten shape operator. The eigenvectors, e_{1}, e_{2} are called principal directions.

- Note that the principal curvatures (and directions) vary from point to point, since $d N$ varies from point to point.
- From above, we know that $d N$ is self-adjoint.
- From the appendix below we know that $d N$ (being self adjoint) has an orthonormal basis e_{1}, e_{2} of eigenvectors with eigenvalues κ_{1}, κ_{2}.
- With respect to e_{1}, e_{2},

$$
d N=\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

Examples

Example

The sphere $\mathbb{S}^{2}(r)=\left\{x^{2}+y^{2}+z^{2}=r^{2}\right\}$.

- $d N=-\frac{1}{r} \mathrm{Id}: \kappa_{1}=\kappa_{2}=\frac{1}{r}$.
- All directions are principal directions!

Example

The cylinder $\mathbb{C}^{2}(r)=\left\{x^{2}+y^{2}=r^{2}\right\}$.

- $d N=-\frac{1}{r} \pi_{\{z=0\}}$
- In the local parametrisation $(r \cos \theta, r \sin \theta, z)$:

$$
d N=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{1}{r}
\end{array}\right)
$$

- $\kappa_{1}(r, \theta)=0, \quad e_{1}(r, \theta)=(0,0,1)$.
- $\kappa_{2}(r, \theta)=\frac{1}{r}, \quad e_{2}(r, \theta)=(-\sin \theta, \cos \theta, 0)$

Mean Curvature and Gauss Curvature

Definition

The Mean Curvature is

$$
H:=\operatorname{Tr}(\mathcal{W})=\operatorname{Tr}(-d N)=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right) .
$$

The Gauss Curvature is

$$
K:=\operatorname{det}(\mathcal{W})=\operatorname{det}(-d N)=\kappa_{1} \kappa_{2} .
$$

Examples

Plane \mathbb{R}^{2}

- $H=0$
- $K=0$.

Sphere \mathbb{S}^{2}

- $H=\frac{1}{r}$
- $K=\frac{1}{r^{2}}$.

Cylinder $\mathbb{C}^{2}(r)$

- $H=\frac{1}{2 r}$
- $K=0$.

Umbilic Points

Theorem

A point $p \in S$ is called umbilic if $\kappa_{1}=\kappa_{2}$. If every point of a connected regular surface S is umbilic, then S is entirely contained in a plane, or a sphere.

- At an umbilic point p,

$$
d N_{p}=\kappa(p) \mathrm{ld}
$$

where $\kappa_{1}(p)=\kappa_{2}(p)=\kappa(p)$.

- Therefore, umbilic points are points where the surface curves the same way in all directions.
- The basic idea is to show that $\kappa(p) \equiv$ constant.

Proof of Umbilic Point Theorem: $\kappa \equiv$ constant.

- With respect to a local parametrisation with $\varphi_{u}=\partial_{u} \varphi, \varphi_{v}=\partial_{v} \varphi$:

$$
d N\left(\varphi_{u}\right)=\partial_{u} N, \quad d N\left(\varphi_{v}\right)=\partial_{v} N
$$

- Thus $d N=\kappa$ ld gives,

$$
\partial_{u} N=\kappa \varphi_{u}, \quad \partial_{v} N=\kappa \varphi_{v}
$$

- What's next? Differentiate!

$$
\partial_{v} \partial_{u} N=\kappa_{v} \varphi_{u}+\kappa \partial_{v} \partial_{u} \varphi
$$

and

$$
\partial_{u} \partial_{v} N=\kappa_{u} \varphi_{v}+\kappa \partial_{u} \partial_{v} \varphi
$$

- Subtracting and use Claireaut's Theorem for mixed partial derivatives:

$$
\kappa_{v} \varphi_{u}=\kappa_{u} \varphi_{v} \Rightarrow \kappa_{v}=\kappa_{u}=0 \Rightarrow \kappa \equiv \mathrm{constant}
$$

since φ_{u}, φ_{v} are linearly independent.

Proof of Umbilic Point Theorem: Locally $S \subseteq \mathbb{R}^{2}$

- If we have

$$
d N \equiv 0
$$

- Therefore

$$
\partial_{u}\langle\varphi, N\rangle \underset{\text { prod rule }}{\overline{=}}\left\langle\varphi_{u}, N\right\rangle+\left\langle\varphi, d N\left(\varphi_{u}\right)\right\rangle \underset{d N \equiv 0}{\overline{=}}\left\langle\varphi_{u}, N\right\rangle \varphi_{u}=\overline{=} 0
$$

Likewise

$$
\partial_{v}\langle\varphi, N\rangle=0
$$

Therefore $\langle\varphi, N\rangle=$ constant and the points $\varphi(u, v)$ lie in a plane.

Proof of Umbilic Point Theorem: Locally $S \subseteq \mathbb{S}^{2}$.

- If we have

$$
d N=\kappa \mathrm{ld}, \quad \kappa \neq 0
$$

- Therefore

$$
\partial_{u}\left(\varphi-\frac{1}{\kappa} N\right) \underset{\kappa \equiv \text { const }}{=} \varphi_{u}-\frac{1}{\kappa} d N\left(\varphi_{u}\right) \underset{d N=\kappa \text { ld }}{=} \varphi_{u}-\frac{1}{\kappa} \kappa \varphi_{u}=0 .
$$

- Likewise

$$
\partial_{v}\left(\varphi-\frac{1}{\kappa} N\right)=0 .
$$

- Therefore

$$
\varphi-\frac{1}{\kappa} N=y_{0} \in \mathbb{R}^{3} \text { is constant. }
$$

- and hence

$$
\left|\varphi(u, v)-y_{0}\right|=\frac{1}{|\kappa|} \Rightarrow \varphi(u, v) \in \mathbb{S}^{2}\left(\frac{1}{|\kappa|}, y_{0}\right)
$$

Proof of Umbilic Theorem: Global

- The local theorem establishes, for each local parametrisation φ :

$$
\begin{aligned}
& \kappa_{\varphi} \equiv \text { constant } \\
& \qquad \begin{cases}N_{\varphi} \equiv \text { const },\left\langle\varphi, N_{\varphi}\right\rangle \equiv C_{\varphi}, & \kappa_{\varphi}=0 \Rightarrow S_{\varphi} \subseteq \mathbb{R}^{2}\left(N_{\varphi}, C_{\varphi}\right) \\
\varphi-\frac{1}{\kappa_{\varphi}} \equiv y_{\varphi}, & \kappa_{\varphi} \neq 0 \Rightarrow S_{\varphi} \subseteq \mathbb{S}^{2}\left(\frac{1}{\left|\kappa_{\varphi}\right|}, y_{\varphi}\right)\end{cases}
\end{aligned}
$$

- In any overlap of charts, $U_{\alpha} \cap U_{\beta}$ all the constants must agree.
- S connected, means for any two points $p, q \in S$ there is a continuous path $\gamma:[0,1] \rightarrow S$ such that $\gamma(0)=p, \gamma(1)=q$.
- Cover the image $\gamma([0,1])$ by local parametrisations $\varphi_{\alpha}\left(U_{\alpha}\right)$ which gives a cover of $[0,1]$:

$$
\varphi_{\alpha}^{-1}\left(U_{\alpha}\right)
$$

- $[0,1]$ is compact so there is a finite cover $\left\{\varphi_{i}\right\}_{i=1}^{n}$. with $p \in \varphi_{1}\left(U_{1}\right)$, $q \in \varphi_{n}\left(U_{n}\right), U_{i} \cap U_{i+1} \neq \emptyset$
- Thus $\kappa(p)=\kappa_{\varphi_{1}}=\kappa_{\varphi_{2}}=\cdots=\kappa_{\varphi_{n}}=\kappa(q)$. Similar for the other constants so the plane (or sphere) is globally defined.

Lecture Nine: Curvature Of Regular Surfaces - Appendix:

 Symmetric bilinear forms(1) Lecture Nine: Curvature Of Regular Surfaces

- Geodesic and Normal Curvature
- Curvature and the Second Fundamental Form
- Principal, Mean and Gauss Curvatures
- Appendix: Symmetric bilinear forms

Symmetric Bilinear Forms

Definition

Let V be a real, finite dimensional vector space.
e.g. $\mathbb{R}, \mathbb{R}^{2}, \mathbb{R}^{3}, \cdots, \mathbb{R}^{n}, \ldots$

A bilinear form B on V is a map

$$
B: V \times V \rightarrow \mathbb{R}
$$

such that for all $c_{1}, c_{2} \in \mathbb{R}$ and $X_{1}, X_{2}, Y \in V$:

$$
B\left(c_{1} X_{1}+c_{2} X_{2}, Y\right)=c_{1} B\left(X_{1}, Y\right)+c_{2} B\left(X_{2}, Y\right)
$$

and

$$
B\left(Y, c_{1} X_{1}+c_{2} X_{2}\right)=c_{1} B\left(Y, X_{1}\right)+c_{2} B\left(Y, X_{2}\right)
$$

B is symmetric if for every $X, Y \in V$:

$$
B(X, Y)=B(Y, X)
$$

Inner Products

Definition

An inner-product g is a positive-definite bilinear form. That is, g is a bilinear form such that for all $X \in V$,

$$
g(X, X) \geq 0, \quad g(X, X)=0 \Rightarrow X=0
$$

Example

Let $V=\mathbb{R}^{2}, X=\left(x_{1}, x_{2}\right)$, and $Y=\left(y_{1}, y_{2}\right)$. Define the standard inner product:

$$
g(X, Y)=\langle X, Y\rangle:=x_{1} y_{1}+x_{2} y_{2} .
$$

Inner Products

Example

Let A be any positive-definite, symmetric matrix. Define

$$
g(X, Y):=X^{T} A Y=\langle X, A Y\rangle
$$

For example, let

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

Then

$$
g(X, Y)=2 x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+3 x_{2} y_{2} .
$$

Note

$$
g(X, X)=2 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}+x_{1}^{2}+2 x_{2}^{2} \geq 0
$$

with equality if and only if $X=(0,0)$.

Canonical Isomorphism

Lemma

Let g be an inner-product on V. Then g induces a linear isomorphism between the vector space $\operatorname{Hom}(V)$ of linear transformations $V \rightarrow V$ and the vector space $B^{2}(V)$ of bilinear forms on V.

The vector space structure on $\operatorname{Hom}(V)$ is given by letting for each $X \in V$,

$$
\left(c_{1} T_{1}+c_{2} T_{2}\right)(X):=c_{1} T_{1}(X)+c_{2} T_{2}(X)
$$

That is, given real constants $c_{1}, c_{2} \in \mathbb{R}$ and linear transformations $T_{1}, T_{2}: V \rightarrow V$, we define the linear transformation $c_{1} T_{1}+c_{2} T_{2}$ by specifying it's value for each $X \in V$.
On the right hand side, note that $T_{1}(X) \in V$ so $c_{1}\left(T_{1}(X)\right)$ is scalar multiplication using the vector space structure on V. Likewise for $c_{2}\left(T_{2}(X)\right)$. The sum $\left(c_{1} T_{1}(X)\right)+\left(c_{2} T_{2}(X)\right)$ is vector addition in V. The vector space structure on linear maps $V \rightarrow V$ is defined pointwise. Exercise: Figure out the vector space structure on bilinear forms. Hint: It's also defined pointwise.

Canonical Isomorphism

Proof.

Choose any basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for V, and write for $X \in V$:

$$
X=X^{1} e_{1}+\cdots+X^{n} e_{n} .
$$

A basis for $\operatorname{Hom}(V)$ is given by the linear transformations

$$
T_{j}^{i}\left(X^{1} e_{1}+\cdots X^{n} e_{n}\right)=X^{i} e_{j} .
$$

A basis for $B^{2}(V)$ is given by the bilinear forms

$$
B^{i j}\left(X^{1} e_{1}+\cdots X^{n} e_{n}, Y^{1} e_{1}+\cdots+Y^{n} e_{n}\right)=X^{i} Y^{j}
$$

Thus,

$$
\operatorname{dim} \operatorname{Hom}(V)=\operatorname{dim} B^{2}(V)=n^{2}
$$

Thus they are isomorphic, being vector spaces of the same dimension, but something else is needed to get a canonical isomorphism...

Canonical Isomorphism

Example

Let $e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$ be the standard basis for \mathbb{R}^{n}.
The isomorphism induced by the standard inner-product defined on basis elements by $T_{j}^{i} \mapsto B^{i j}$ and then extended by linearity.

Proof.

In general, given $T \in \operatorname{Hom}(V)$ define

$$
\left[B_{g}(T)\right](X, Y)=g(T(X), Y) .
$$

Then $B_{g}(T)$ is a bilinear form.
The map

$$
B_{g}: T \mapsto B_{g}(T)
$$

is our desired isomorphism.
exercise: Verify linearity of the map B_{g}.

Canonical Isomorphism

Proof.

That B_{g} is an isomorphism follows since if $B_{g}\left(T_{1}\right)=B_{g}\left(T_{2}\right)$, then for every $X, Y \in V$:

$$
0=\left(B_{g}\left(T_{1}\right)-B_{g}\left(T_{2}\right)\right)(X, Y)=g\left(T_{1}(X)-T_{2}(X), Y\right)
$$

In particular for $Y=T_{1}(X)-T_{2}(X)$ we get that for every X

$$
0=g\left(T_{1}(X)-T_{2}(X), T_{1}(X)-T_{2}(X)\right) \Rightarrow T_{1}(X)-T_{2}(X)=0
$$

since g is positive-definite.
Therefore, $B_{g}\left(T_{1}\right)=B_{g}\left(T_{2}\right) \Rightarrow T_{1}=T_{2}$ and the map B_{g} is injective.
Since $\operatorname{dim} \operatorname{Hom}(V)=\operatorname{dim} B^{2}(V)=n^{2}<\infty$, the map is also surjective and hence an isomorphism.

Self-adjoint operators

Let g be an inner-product on a finite-dimensional vector space V.

Definition

A self-adjoint operator (with respect to g) is an linear map $T: V \rightarrow V$ such that for every $X, Y \in V$

$$
g(T(X), Y)=g(X, T(Y))
$$

Lemma

A linear map $T: V \rightarrow V$ is self-adjoint if and only if $B_{g}(T)$ is a symmetric bilinear form.

Proof.

exercise: Back of the envelope calculation directly using the definitions.

Eigenvalues and Eigenvectors

Theorem
A self adjoint operator T is diagonalisable. That is, there is a basis $\left\{e_{i}\right\}_{i=1}^{n}$ of eigenvalues.

Proof.

Consider the case $\operatorname{dim} V=2$.
Let us write

$$
|X|_{g}=\sqrt{g(X, X)}
$$

From a basis $\left\{X_{1}, X_{2}\right\}$ Gram-Schmidt gives an orthonormal basis:

$$
\begin{gathered}
\tilde{e}_{1}=\frac{X_{1}}{\left|X_{1}\right| g}, \tilde{e}_{2}=\frac{X_{2}-g\left(X_{2}, \tilde{e}_{1}\right) \tilde{e}_{1}}{\left|X_{2}-g\left(X_{2}, \tilde{e}_{1}\right) \tilde{e}_{1}\right| g} . \\
g\left(\tilde{e}_{i}, \tilde{e}_{j}\right)=\delta_{i j}:= \begin{cases}1, & i=j \\
0, & i \neq j .\end{cases}
\end{gathered}
$$

Eigenvalues and Eigenvectors

Proof.

We may thus write

$$
\mathbb{S}^{1}=\{X: g(X, X)=1\}=\left\{\cos \theta \tilde{e}_{1}+\sin \theta \tilde{e}_{2}: \theta \in[0,2 \pi]\right\}
$$

Let $\lambda_{1}=\min \left\{g(T(X), X): X \in \mathbb{S}^{1}\right\}$.
The map

$$
\theta \in[0,2 \pi] \mapsto g\left(T\left(\cos \theta \tilde{e}_{1}+\sin \theta \tilde{e}_{2}\right), \cos \theta \tilde{e}_{1}+\sin \theta \tilde{e}_{2}\right)
$$

is continuous hence there exists a $\theta_{0} \in[0,2 \pi]$ such that

$$
\lambda_{1}=g\left(T\left(\cos \theta_{0} \tilde{e}_{1}+\sin \theta_{0} \tilde{e}_{2}\right), \cos \theta_{0} \tilde{e}_{1}+\sin \theta_{0} \tilde{e}_{2}\right)
$$

Our desired basis is the orthonormal (why?) pair:

$$
\begin{aligned}
& e_{1}=\cos \theta_{0} \tilde{e}_{1}+\sin \theta_{0} \tilde{e}_{2} \\
& e_{2}=-\sin \theta_{0} \tilde{e}_{1}+\cos \theta_{0} \tilde{e}_{2}
\end{aligned}
$$

Eigenvalues and Eigenvectors

Proof.

Let us write

$$
E_{1}(\theta)=\cos \theta \tilde{e}_{1}+\sin \theta \tilde{e}_{2}, \quad E_{2}(\theta)=-\sin \theta \tilde{e}_{1}+\cos \theta \tilde{e}_{2}
$$

so that

$$
E_{1}\left(\theta_{0}\right)=e_{1}, \quad E_{2}\left(\theta_{0}\right)=e_{2}
$$

and

$$
E_{1}^{\prime}(\theta)=E_{2}(\theta), \quad E_{2}^{\prime}(\theta)=-E_{1}(\theta)
$$

Eigenvalues and Eigenvectors

Proof.

By definition, θ_{0} is a critical point of

$$
g\left(T\left(E_{1}(\theta)\right), E_{1}(\theta)\right)
$$

hence

$$
\begin{aligned}
0 & =\left.\partial_{\theta}\right|_{\theta=\theta_{0}} g\left(T\left(E_{1}(\theta)\right), E_{2}(\theta)\right) \\
& =g\left(d T\left(e_{2}\right), e_{1}\right)+g\left(T\left(e_{1}\right), e_{2}\right) \\
& =g\left(T\left(e_{2}\right), e_{1}\right)+g\left(T\left(e_{1}\right), e_{2}\right) .
\end{aligned}
$$

Eigenvalues and Eigenvectors

Proof.

We just obtained that

$$
g\left(T\left(e_{1}\right), e_{2}\right)=-g\left(e_{1}, T\left(e_{2}\right)\right)
$$

But T is self-adjoint and hence

$$
g\left(T\left(e_{1}\right), e_{2}\right)=g\left(e_{1}, T\left(e_{2}\right)\right)
$$

Thus

$$
g\left(T\left(e_{1}\right), e_{2}\right)=-g\left(T\left(e_{1}\right), e_{2}\right) \Rightarrow g\left(T\left(e_{1}\right), e_{2}\right)=0
$$

Therefore $T\left(e_{1}\right) \perp e_{2}$ and hence

$$
T\left(e_{1}\right)=c e_{1}
$$

for some c (possibly $c=0$ but that's okay).

Eigenvalues and Eigenvectors

Proof.

Finally,

$$
c=c g\left(e_{1}, e_{1}\right)=g\left(c e_{1}, e_{1}\right)=g\left(T\left(e_{1}\right), e_{1}\right)=\lambda_{1} .
$$

so that

$$
T\left(e_{1}\right)=\lambda_{1} e_{1}
$$

as claimed. A similar argument gives $T\left(e_{2}\right)=\lambda_{2} e_{2}$ for some λ_{2}. In fact $\lambda_{2}=\max \left\{g(T(X), X): X \in \mathbb{S}^{1}\right\}$ because:

$$
\begin{aligned}
& g(T(X), X)=g\left(T\left(X^{1} e_{1}+X^{2} e_{2}\right), X^{1} e_{1}+X^{2} e_{2}\right) \\
&=g\left(X^{1} \lambda_{1} e_{1}+X^{2} \lambda_{2} e_{2}, X^{1} e_{1}+X^{2} e_{2}\right) \\
&=\lambda_{1} X_{1}^{2}+\lambda_{2} X^{2} \\
& e_{1}, e_{2} \circ / n \\
& \leq \lambda_{2}\left(X_{1}^{2}+X_{2}^{2}\right)_{g(X, X)=1}=\lambda_{2} .
\end{aligned}
$$

Remarks on Eigenvalues and Eigenvectors

- By an induction argument, and using the same ideas, one can prove the general case of n dimensions.
- With respect to the basis of eigenvectors e_{1}, e_{2}, T is diagonal:

$$
T\left(X^{1} e_{1}+X^{2} e_{2}\right)=X^{1} T\left(e_{1}\right)+X^{2} T\left(e_{2}\right)=X^{1} \lambda_{1} e_{1}+X^{2} \lambda_{2} e_{2}
$$

- As a matrix

$$
\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)\binom{X^{1}}{X^{2}}=\binom{\lambda_{1} X^{1}}{\lambda_{2} X^{2}}
$$

Quadratic Forms

Let B be a symmetric bi-linear form.
Define the quadratic form Q :

$$
Q(X)=B(X, X)
$$

Q is quadratic in the sense that

$$
Q(c X)=B(c X, c X)=c^{2} B(X, X)=c^{2} Q(X)
$$

Notice that

$$
\begin{aligned}
Q(X+Y) & =B(X+Y, X+Y)=B(X, X+Y)+B(Y, X+Y) \\
& =B(X, X)+B(X, Y)+B(Y, X)+B(Y, Y) \\
& =Q(X)+2 B(X, Y)+Q(Y)
\end{aligned}
$$

Thus, by symmetry and bi-linearity we may recover B from Q :

$$
B(X, Y)=\frac{1}{2}[Q(X+Y)-Q(X)-Q(Y)]
$$

