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Tangent Vectors
Define an equivalence class of curves: γ ∼ σ if

γ(0) = σ(0)
and there is a chart ϕ : U → R2 with γ(0) ∈ U such that

(ϕ ◦ γ)′(0) = (ϕ ◦ σ)′(0).
Write [γ] = {σ : σ ∼ γ} for the equivalence class of γ.

Definition
The tangent space, TxM to M at x is the equivalence class of curves
through x

TxM = {[γ] : γ(0) = x}.

If we choose a different chart, ψ
(ψ ◦ γ)′(0) = (ψ ◦ ϕ−1 ◦ ϕ ◦ γ)′(0)

= d(ψ ◦ ϕ−1) · (ϕ ◦ γ)′(0) = d(ψ ◦ ϕ−1) · (ϕ ◦ σ)′(0)
= (ψ ◦ σ)′(0).
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Tangent Vectors on Regular Surfaces

Recall that for a regular surface

TxS = {γ′(0) : γ(0) = x}

where γ′(0) is the derivative at zero of γ : (−ε, ε) → S ⊆ R3 as a curve in
R3.
The new definition says tangent vectors are equivalence classes of curves
[γ] in S.
The definitions will be equivalent provided:

γ′(0) = σ′(0) as vectors in R3 if and only if [γ] = [σ].
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Tangent Vectors on Regular Surfaces

Now recall that charts ϕ are just inverses of local parametrisations ψ.
That is ϕ = ψ−1.
We have

γ′(0) = σ′(0) ⇔ (ϕ−1 ◦ ϕ ◦ γ)′(0) = (ϕ−1 ◦ ϕ ◦ σ)′(0)

if and only if

d(ϕ−1) · (ϕ ◦ γ)′(0) = d(ϕ−1) · (ϕ ◦ σ)′(0).

But ψ = ϕ−1 is a local parametrisation so that d(ϕ−1) injective.
Therefore the last equation is equivalent to

(ϕ ◦ γ)′(0) = (ϕ ◦ σ)′(0).

That is [γ] = [σ].
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Coordinate Vector Fields

Definition
With respect to chart ϕ, we define coordinate vector fields:

Eu(x) = [ϕ−1(ϕ(x) + (t, 0))], Ev (x) = [ϕ−1(ϕ(x) + (0, t))]

That is, ϕ : U → R2 and so ϕ(x) ∈ R2. Then ϕ(x) + (t, 0) is a curve
in R2 and

γu(t) = ϕ−1(ϕ(x) + (t, 0))

is a curve in M with γu(0) = x .
Thus Eu(x) = [γu] is a tangent vector at x .
We think of Eu as γ′u(0) (though strictly speaking, the derivative only
makes sense in the chart).
Analogously for n-dimensions: Ei(x) = [ϕ−1(ϕ(x) + tei)].
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Definition

Definition
The set of tangent vectors is called the tangent bundle. It is denoted TM.

Each tangent vector is an equivalence class of curves X = [γ].
There is a bundle projection map:

x = π(X ) = γ(0) ∈ M

where X = [γ].
This is independent of the representative since if X = [γ] = [σ], then
by definition γ(0) = σ(0).
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Vector Bundle Structure
Theorem
The tangent bundle is a manifold. In fact, it is a vector bundle of rank
n = dim(M).

Definition
A vector bundle of rank k consists of smooth manifolds M,E and a
smooth map π : E → M such that there exists an open cover {Uα} of M
and local trivialisations ϕα : E |Uα := π−1(Uα) → Uα × Rk satisfying

1 ϕα : E |Uα → Uα × Rk is a homeomorphism,
2 p1 ◦ ϕα = π where p1 : Uα × Rk → Uα is the projection onto the first

factor,
3 The transition maps ταβ = ϕβ ◦ϕ−1

α : Uα ∩Uβ ×Rk → Uα ∩Uβ ×Rk

are of the form
ταβ(x ,V ) = (x ,Aαβ(x) · V )

where Aαβ : Uαβ → GLn is a smooth map with each Aαβ(x) and
invertible matrix and Aαβ(x) · V denotes matrix multiplication.
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Remarks on Vector Bundles
1 ϕα : E |Uα → Uα × Rk is a diffeomorphism,

This point says that locally a vector bundle is may be identified
diffeomorphicly with a trivial bundle Uα × Rk .

2 p1 ◦ ϕα = π where p1 : Uα × Rk → Uα

I This just says that under the local indentification with a trivial bundle,
the projection is just projecting onto the first factor.

I For X ∈ E , we have ϕα(X ) = (x ,Vα) with x ∈ Uα ⊆ M and Vα ∈ Rk .
I We think of elements of a vector bundle having a base point

x = π(X ) = p1(ϕα(X )) = p1(x ,V ) = x and locally a vector part
V ∈ Rk .

3

(x ,Vβ) = ταβ(x ,Vα) = (x ,Aαβ(x) · Vα)

The vector part Vα = p2(ϕα(X )) depends on the chosen trivialisation.
The transition map tells us how to relate the vector part in one local
trivialisation with the vector part in another: Vβ = Aαβ ·Vα. Think of
this like a change of basis.
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Fibres and Vector Space Structure
Definition
Let X1,X2 ∈ TM with x = π(X1) = π(X2) and let c1, c2 ∈ R. Then we
define

c1X1 + c2X2 = ϕ−1
α (x , c1V α

1 + c2V α
2 )

where ϕα(Xi) = (x ,V α
i ).

In another local trivialisation, we have (x ,V β
i ) = (x ,Aαβ · V α

i ). Then
ταβ(ϕα(c1X1 + c2X2)) = (x ,Aαβ(x) · (c1V α

1 + c2V α
2 ))

= (x , c1Aαβ(x)Xα
1 + c2Aαβ(x)Xα

2 )

= (x , c1V β
1 + c2V β

2 )

= ϕβ(c1X 1 + c2X 2).

Thus taking a linear combination of the V α
i is identified by the transition

map with the same linear combination of the V β
i hence definition of

c1X 1 + c2X 2 is independent of the chosen local trivialisation.
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Proof of Vector Bundle Structure
Proof.
In a local chart ϕα : Uα → Rn, we have coordinate vector fields

Ei(x) = [ϕ−1
α (ϕα(x) + tei)].

These are a basis since if X = [γ], then

(ϕα ◦ γ)′(0) = X 1e1 + · · ·+ Xnen

for unique constants X 1, . . . ,Xn ∈ R.
Therefore

X = [ϕ−1
α (ϕα(x) + t(X 1e1 + · · ·+ Xnen))]

= X 1[ϕ−1
α (ϕα(x) + te1)] + · · ·+ Xn[ϕ−1

α (ϕα(x) + ten)]

= X 1E1 + · · ·XnEn.
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Proof of Vector Bundle Structure

Proof.
For X ∈ E |Uα = π−1(Uα), define

Φα(X ) = (x ,X 1, . . . ,Xn) ∈ Uα × Rk .

The first two points in the definition vector bundle are straightforward.
For the third, the transition maps are

ταβ(x ,V ) = (x , d(ϕβ ◦ ϕ−1
α ) · V ).

Recall that ϕβ ◦ ϕ−1
α are the transition maps for M which are smooth

diffeomorphisms hence the differential is a linear isomorphism as required.
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Proof of Vector Bundle Structure

Proof.
For the manifold structure on TM. Charts are given by:

ψα(X ) = (ϕα(x),X 1(x), . . . ,Xn(x)) ∈ Rn × Rn.

The transition map is

ψβ ◦ ψ−1
α (y ,V ) = (ϕβ ◦ ϕ−1

α (y), d(ϕβ ◦ ϕ−1
α ) · V ).
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Examples
1 For M = Rn, we have TRn ' Rn × Rn.
2 On the two-sphere S2, the famous "Hairy Ball Theorem" from

albegraic topology states that there is no non-vanishing vector field
on TS2. Then TS2 6' S2 × R2.

3 In fact, a much deeper result says that TSn ' Sn × Rn if and only if
n = 1, 3, 7.

I It’s not too hard to show the result is true for n = 1, 3, 7 by using
complex multiplication for S1 ⊆ R2 ' C, and quaternion and octonion
multiplication for n = 3 and n = 7 respectively.

I The really deep part is that no other n admits a global trivialisation.
4 The torus has TT ' T× R2, since T ' S1 × S1.
5 In general,

T (M × N) ' TM × TN

so that the tangent bundle of a product of manifolds is the product of
the tangent bundles.
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Riemannian Metrics

Definition
A Riemannian metric (or just metric) on M is a smooth choice, gx of
positive definite, symmetric bilinear form for each x ∈ M.

There are various ways to interpret the term smooth here. In the present
context, perhaps the easiest way to define smooth is with respect to the
coordinate vector fields: define

gij(x) = g(Ei(x),Ej(x))

Then
gx = (gij(x))

is smooth if and only if y ∈ Rn 7→ (gij(ϕ
−1(y)) is a smooth matrix valued

function. Equivalently, each component function gij is smooth.
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Riemannian Geometry

We can define length, angle and area just as for regular surfaces.

|X |g =
√

g(X ,X ), length of a tangent vector

θ = arccos

(
g(X ,Y )

|X |g |Y |g

)
angle between tangent vectors

L[γ] =
∫ b

a
|γ′(t)|dt arc-length of a curve

A(R) =

∫
R

√
det gdudv area of a bounded region
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