MATH704 Differential Geometry

Macquarie University, Semester 22018

Paul Bryan

Lecture Eleven: The Tangent Space

(1) Lecture Eleven: The Tangent Space

- Tangent Vectors
- The Tangent Bundle
- Riemannian Metrics

Lecture Eleven: The Tangent Space - Tangent Vectors

(1) Lecture Eleven: The Tangent Space

- Tangent Vectors
- The Tangent Bundle
- Riemannian Metrics

Tangent Vectors

Define an equivalence class of curves: $\gamma \sim \sigma$ if

$$
\gamma(0)=\sigma(0)
$$

and there is a chart $\varphi: U \rightarrow \mathbb{R}^{2}$ with $\gamma(0) \in U$ such that

$$
(\varphi \circ \gamma)^{\prime}(0)=(\varphi \circ \sigma)^{\prime}(0)
$$

Write $[\gamma]=\{\sigma: \sigma \sim \gamma\}$ for the equivalence class of γ.

Definition

The tangent space, $T_{x} M$ to M at x is the equivalence class of curves through x

$$
T_{x} M=\{[\gamma]: \gamma(0)=x\}
$$

If we choose a different chart, ψ

$$
\begin{aligned}
(\psi \circ \gamma)^{\prime}(0) & =\left(\psi \circ \varphi^{-1} \circ \varphi \circ \gamma\right)^{\prime}(0) \\
& =d\left(\psi \circ \varphi^{-1}\right) \cdot(\varphi \circ \gamma)^{\prime}(0)=d\left(\psi \circ \varphi^{-1}\right) \cdot(\varphi \circ \sigma)^{\prime}(0) \\
& =(\psi \circ \sigma)^{\prime}(0) .
\end{aligned}
$$

Tangent Vectors on Regular Surfaces

Recall that for a regular surface

$$
T_{x} S=\left\{\gamma^{\prime}(0): \gamma(0)=x\right\}
$$

where $\gamma^{\prime}(0)$ is the derivative at zero of $\gamma:(-\epsilon, \epsilon) \rightarrow S \subseteq \mathbb{R}^{3}$ as a curve in \mathbb{R}^{3}.
The new definition says tangent vectors are equivalence classes of curves [γ] in S.
The definitions will be equivalent provided:

- $\gamma^{\prime}(0)=\sigma^{\prime}(0)$ as vectors in \mathbb{R}^{3} if and only if $[\gamma]=[\sigma]$.

Tangent Vectors on Regular Surfaces

Now recall that charts φ are just inverses of local parametrisations ψ.
That is $\varphi=\psi^{-1}$.
We have

$$
\gamma^{\prime}(0)=\sigma^{\prime}(0) \Leftrightarrow\left(\varphi^{-1} \circ \varphi \circ \gamma\right)^{\prime}(0)=\left(\varphi^{-1} \circ \varphi \circ \sigma\right)^{\prime}(0)
$$

if and only if

$$
d\left(\varphi^{-1}\right) \cdot(\varphi \circ \gamma)^{\prime}(0)=d\left(\varphi^{-1}\right) \cdot(\varphi \circ \sigma)^{\prime}(0)
$$

But $\psi=\varphi^{-1}$ is a local parametrisation so that $d\left(\varphi^{-1}\right)$ injective. Therefore the last equation is equivalent to

$$
(\varphi \circ \gamma)^{\prime}(0)=(\varphi \circ \sigma)^{\prime}(0)
$$

That is $[\gamma]=[\sigma]$.

Coordinate Vector Fields

Definition

With respect to chart φ, we define coordinate vector fields:

$$
E_{u}(x)=\left[\varphi^{-1}(\varphi(x)+(t, 0))\right], \quad E_{v}(x)=\left[\varphi^{-1}(\varphi(x)+(0, t))\right]
$$

- That is, $\varphi: U \rightarrow \mathbb{R}^{2}$ and so $\varphi(x) \in \mathbb{R}^{2}$. Then $\varphi(x)+(t, 0)$ is a curve in \mathbb{R}^{2} and

$$
\gamma_{u}(t)=\varphi^{-1}(\varphi(x)+(t, 0))
$$

is a curve in M with $\gamma_{u}(0)=x$.

- Thus $E_{u}(x)=\left[\gamma_{u}\right]$ is a tangent vector at x.
- We think of E_{u} as $\gamma_{u}^{\prime}(0)$ (though strictly speaking, the derivative only makes sense in the chart).
- Analogously for n-dimensions: $E_{i}(x)=\left[\varphi^{-1}\left(\varphi(x)+t e_{i}\right)\right]$.

Lecture Eleven: The Tangent Space - The Tangent Bundle

(1) Lecture Eleven: The Tangent Space

- Tangent Vectors
- The Tangent Bundle
- Riemannian Metrics

Definition

Definition

The set of tangent vectors is called the tangent bundle. It is denoted TM.

- Each tangent vector is an equivalence class of curves $X=[\gamma]$.
- There is a bundle projection map:

$$
x=\pi(X)=\gamma(0) \in M
$$

where $X=[\gamma]$.

- This is independent of the representative since if $X=[\gamma]=[\sigma]$, then by definition $\gamma(0)=\sigma(0)$.

Vector Bundle Structure

Theorem

The tangent bundle is a manifold. In fact, it is a vector bundle of rank $n=\operatorname{dim}(M)$.

Definition

A vector bundle of rank k consists of smooth manifolds M, E and a smooth map $\pi: E \rightarrow M$ such that there exists an open cover $\left\{U_{\alpha}\right\}$ of M and local trivialisations $\varphi_{\alpha}:\left.E\right|_{U_{\alpha}}:=\pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{k}$ satisfying
(1) $\varphi_{\alpha}:\left.E\right|_{U_{\alpha}} \rightarrow U_{\alpha} \times \mathbb{R}^{k}$ is a homeomorphism,
(2) $p_{1} \circ \varphi_{\alpha}=\pi$ where $p_{1}: U_{\alpha} \times \mathbb{R}^{k} \rightarrow U_{\alpha}$ is the projection onto the first factor,
(3) The transition maps $\tau_{\alpha \beta}=\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{k} \rightarrow U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{k}$ are of the form

$$
\tau_{\alpha \beta}(x, V)=\left(x, A_{\alpha \beta}(x) \cdot V\right)
$$

where $A_{\alpha \beta}: U_{\alpha \beta} \rightarrow \mathbb{G}_{n}$ is a smooth map with each $A_{\alpha \beta}(x)$ and invertible matrix and $A_{\text {en }}(x)$. V denntes matrix multinliration

Remarks on Vector Bundles

(1) $\varphi_{\alpha}:\left.E\right|_{U_{\alpha}} \rightarrow U_{\alpha} \times \mathbb{R}^{k}$ is a diffeomorphism, This point says that locally a vector bundle is may be identified diffeomorphicly with a trivial bundle $U_{\alpha} \times \mathbb{R}^{k}$.
(2) $p_{1} \circ \varphi_{\alpha}=\pi$ where $p_{1}: U_{\alpha} \times \mathbb{R}^{k} \rightarrow U_{\alpha}$

- This just says that under the local indentification with a trivial bundle, the projection is just projecting onto the first factor.
- For $X \in E$, we have $\varphi_{\alpha}(X)=\left(x, V_{\alpha}\right)$ with $x \in U_{\alpha} \subseteq M$ and $V_{\alpha} \in \mathbb{R}^{k}$.
- We think of elements of a vector bundle having a base point $x=\pi(X)=p_{1}\left(\varphi_{\alpha}(X)\right)=p_{1}(x, V)=x$ and locally a vector part $V \in \mathbb{R}^{k}$.
(3)

$$
\left(x, V_{\beta}\right)=\tau_{\alpha \beta}\left(x, V_{\alpha}\right)=\left(x, A_{\alpha \beta}(x) \cdot V_{\alpha}\right)
$$

The vector part $V_{\alpha}=p_{2}\left(\varphi_{\alpha}(X)\right)$ depends on the chosen trivialisation. The transition map tells us how to relate the vector part in one local trivialisation with the vector part in another: $V_{\beta}=A_{\alpha \beta} \cdot V_{\alpha}$. Think of this like a change of basis.

Fibres and Vector Space Structure

Definition

Let $X_{1}, X_{2} \in T M$ with $x=\pi\left(X_{1}\right)=\pi\left(X_{2}\right)$ and let $c^{1}, c^{2} \in \mathbb{R}$. Then we define

$$
c^{1} X_{1}+c^{2} X_{2}=\varphi_{\alpha}^{-1}\left(x, c^{1} V_{1}^{\alpha}+c^{2} V_{2}^{\alpha}\right)
$$

where $\varphi_{\alpha}\left(X_{i}\right)=\left(x, V_{i}^{\alpha}\right)$.
In another local trivialisation, we have $\left(x, V_{i}^{\beta}\right)=\left(x, A_{\alpha \beta} \cdot V_{i}^{\alpha}\right)$. Then

$$
\begin{aligned}
\tau_{\alpha \beta}\left(\varphi_{\alpha}\left(c^{1} X_{1}+c^{2} X_{2}\right)\right) & =\left(x, A_{\alpha \beta}(x) \cdot\left(c^{1} V_{1}^{\alpha}+c^{2} V_{2}^{\alpha}\right)\right) \\
& =\left(x, c^{1} A_{\alpha \beta}(x) X_{1}^{\alpha}+c^{2} A_{\alpha \beta}(x) X_{2}^{\alpha}\right) \\
& =\left(x, c^{1} V_{1}^{\beta}+c^{2} V_{2}^{\beta}\right) \\
& =\varphi_{\beta}\left(c^{1} X^{1}+c^{2} X^{2}\right) .
\end{aligned}
$$

Thus taking a linear combination of the V_{i}^{α} is identified by the transition map with the same linear combination of the V_{i}^{β} hence definition of $c_{1} X^{1}+c_{2} X^{2}$ is independent of the chosen local trivialisation.

Proof of Vector Bundle Structure

Proof.

In a local chart $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$, we have coordinate vector fields

$$
E_{i}(x)=\left[\varphi_{\alpha}^{-1}\left(\varphi_{\alpha}(x)+t e_{i}\right)\right] .
$$

These are a basis since if $X=[\gamma]$, then

$$
\left(\varphi_{\alpha} \circ \gamma\right)^{\prime}(0)=X^{1} e_{1}+\cdots+X^{n} e_{n}
$$

for unique constants $X^{1}, \ldots, X^{n} \in \mathbb{R}$.
Therefore

$$
\begin{aligned}
X & =\left[\varphi_{\alpha}^{-1}\left(\varphi_{\alpha}(x)+t\left(X^{1} e_{1}+\cdots+X^{n} e_{n}\right)\right)\right] \\
& =X^{1}\left[\varphi_{\alpha}^{-1}\left(\varphi_{\alpha}(x)+t e_{1}\right)\right]+\cdots+X^{n}\left[\varphi_{\alpha}^{-1}\left(\varphi_{\alpha}(x)+t e_{n}\right)\right] \\
& =X^{1} E_{1}+\cdots X^{n} E_{n} .
\end{aligned}
$$

Proof of Vector Bundle Structure

Proof.

For $\left.X \in E\right|_{U_{\alpha}}=\pi^{-1}\left(U_{\alpha}\right)$, define

$$
\Phi_{\alpha}(X)=\left(x, X^{1}, \ldots, X^{n}\right) \in U_{\alpha} \times \mathbb{R}^{k} .
$$

The first two points in the definition vector bundle are straightforward. For the third, the transition maps are

$$
\tau_{\alpha \beta}(x, V)=\left(x, d\left(\varphi_{\beta} \circ \varphi_{\alpha}^{-1}\right) \cdot V\right) .
$$

Recall that $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ are the transition maps for M which are smooth diffeomorphisms hence the differential is a linear isomorphism as required.

Proof of Vector Bundle Structure

Proof.

For the manifold structure on TM. Charts are given by:

$$
\psi_{\alpha}(X)=\left(\varphi_{\alpha}(x), X^{1}(x), \ldots, X^{n}(x)\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

The transition map is

$$
\psi_{\beta} \circ \psi_{\alpha}^{-1}(y, V)=\left(\varphi_{\beta} \circ \varphi_{\alpha}^{-1}(y), d\left(\varphi_{\beta} \circ \varphi_{\alpha}^{-1}\right) \cdot V\right) .
$$

Examples

(1) For $M=\mathbb{R}^{n}$, we have $T \mathbb{R}^{n} \simeq \mathbb{R}^{n} \times \mathbb{R}^{n}$.
(2) On the two-sphere \mathbb{S}^{2}, the famous "Hairy Ball Theorem" from albegraic topology states that there is no non-vanishing vector field on $T \mathbb{S}^{2}$. Then $T \mathbb{S}^{2} \not 千 \mathbb{S}^{2} \times \mathbb{R}^{2}$.
(3) In fact, a much deeper result says that $T \mathbb{S}^{n} \simeq \mathbb{S}^{n} \times \mathbb{R}^{n}$ if and only if $n=1,3,7$.

- It's not too hard to show the result is true for $n=1,3,7$ by using complex multiplication for $\mathbb{S}^{1} \subseteq \mathbb{R}^{2} \simeq \mathbb{C}$, and quaternion and octonion multiplication for $n=3$ and $n=7$ respectively.
- The really deep part is that no other n admits a global trivialisation.
(9) The torus has $T \mathbb{T} \simeq \mathbb{T} \times \mathbb{R}^{2}$, since $\mathbb{T} \simeq \mathbb{S}^{1} \times \mathbb{S}^{1}$.
(5) In general,

$$
T(M \times N) \simeq T M \times T N
$$

so that the tangent bundle of a product of manifolds is the product of the tangent bundles.

Lecture Eleven: The Tangent Space - Riemannian Metrics

(1) Lecture Eleven: The Tangent Space

- Tangent Vectors
- The Tangent Bundle
- Riemannian Metrics

Riemannian Metrics

Definition

A Riemannian metric (or just metric) on M is a smooth choice, g_{x} of positive definite, symmetric bilinear form for each $x \in M$.

There are various ways to interpret the term smooth here. In the present context, perhaps the easiest way to define smooth is with respect to the coordinate vector fields: define

$$
g_{i j}(x)=g\left(E_{i}(x), E_{j}(x)\right)
$$

Then

$$
g_{x}=\left(g_{i j}(x)\right)
$$

is smooth if and only if $y \in \mathbb{R}^{n} \mapsto\left(g_{i j}\left(\varphi^{-1}(y)\right)\right.$ is a smooth matrix valued function. Equivalently, each component function $g_{i j}$ is smooth.

Riemannian Geometry

We can define length, angle and area just as for regular surfaces.

$$
\begin{gathered}
|X|_{g}=\sqrt{g(X, X)}, \quad \text { length of a tangent vector } \\
\theta=\arccos \left(\frac{g(X, Y)}{|X|_{g}|Y|_{g}}\right) \quad \text { angle between tangent vectors } \\
L[\gamma]=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t \quad \text { arc-length of a curve } \\
A(R)=\int_{R} \sqrt{\operatorname{det} g} d u d v \quad \text { area of a bounded region }
\end{gathered}
$$

