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Vector Fields

Definition
A vector field on a smooth manifold is a smooth function X : M — TM
such that X(x) € TM for each x € M.

@ Smoothness means:
In local coordinates (i.e. in a chart U), we may uniquely write:

X(x) = XY (x)er(x) + - - + X" (x)en(x)

where ey, --- , e, are the coordinate vector fields.
Then X is smooth if the functions X' : U — R are smooth.
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Some Examples

Example (On the cylinder)
X(x,y,z) =(—y,x,0), X(z,0) = (—sinf,cosh,0)

Example (On the sphere)

X(x,y,z) =(1,0,0) — ((1,0,0), (x,y,2)) (x,y,z) = (1 — x2, —xy, —xz) )

Example (On a graph, S = {(u, v, f(u,v))})
X(u,v) =(1,0,f(u,v)), X(u,v)=1(0,1,1(u,v))
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Tangent Vectors as Derivations
Definition
A tangent vector acts as a local derivation: For V € TM, with x = 7(X)

and f : M — R a smooth function:

V(f) = dfi - V = O¢fe—of (1(t))

where V = [v].

@ Here V(f) € R is a real number. In a chart ¢:
V(f) = d(f oo™l - (9 07)(0).

o Note that f is smooth provided f o ¢! is smooth for any chart and v
is smooth provided ¢ oy is smooth for any chart.
@ Notice that

d(f°@_1)|<p(x)'(9007)/(0) = Ott=0 [(f o 90_1) o(po ’Y)} = Ot|e=0f (7(1))

is independent of the choice of chart.
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Vector Fields as Derivations
Definition

Let X : M — TM be a vector field and f : M — R a smooth function.
Then we define a new smooth function,

X(F)(x) = dfi(X(x)).

e Sometimes, we write X(f) as Oxf to emphasise that f is
differentiated in the direction X.

@ In a chart, with X = Xle; + -+ + X"e, we have
orf of

-1 _yl e L..xn
(Oxf)e () =X (y)ayl W)+ X5 5

(v) = Dxf
the usual directional derivative on R".

@ In particular, if E; is a coordinate vector field we write 0; for E; since
of
ox'”
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Leibniz Product Rule

Lemma

Let f,g: eM — R be smooth functions. For a tangent vector V € TM
with x = w(V), we have
V(fg) = f(x)V(g) + g(x) V().

For a vector field X, we have

Ix(fg)(x) = f(x)Oxg(x) + g(x)Oxf(x).

@ The proof follows from the corresponding rule for the directional
derivative in R"!
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Dependence on X and f

Lemma

Let X be a vector field and f be a function. Then at a point x € M,
Oxf(x) depends on f in a neighbourhood of x (in fact it only on f
restricted to y where 7/(0) = X) but only on the value X(x) of X at x.

e If f, g are functions such that ¥ = g on an open neighbourhood
U C M, then Oxf(x) = dxg(x) for every x € M.

@ In fact, if v is any curve with X = [7], then we only need
foy=gon.

@ On the other hand, if X and Y are vector fields such that
X(x) = Y(x), then Oxf(x) = Oy f(x) even if X(y) # Y(y) for every
y # X

Thus Oxf(x) depends on f at nearby points to x but only on X at the
point x itself.
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The Lie Bracket
Definition
The Lie Bracket [X, Y] of two vector fields X, Y is defined by

[X, Y]f = OxfOyf — OyOxF.

@ The point is that although [X, Y] includes second derivatives of f,
they all cancel and only first derivatives are left!

@ In a chart
OxOyf = Ox (Z Y"a,-f> => > XIY00,f + X0, Y 0,f
i=1 j=1i=1
and
n n ) . . .
Oyoxf =Y Y YX00if + YO X O)f.
i=1 j=1
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The Lie Bracket

Now we have

OxOyf — dyOxf =Y _ XIY'00if + XI0;Y 0;f

iy
= YXI00if + YO X 0;f
1
= XYoo f = > Yo XIof
) )
=Y XIoYiof = > YigXof
iy iy

R

— Z [Ox Y — 9y X' O;f.

> Xioyi— Yfani] O;f
J
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The Lie Bracket

That is we have Z = [X, Y] is a vector field expressed in coordinates as
Z=27'9;

with ' ' '
Z'=0xY' — 0y X'.

@ The Lie bracket is a commutator. It measures the effect of applying
Y and then X compared with applying X and then Y.

@ It involves derivatives of both X and Y and thus depends on both X
and Y in an open neighbourhood.

@ Using the Leibniz rule we can verify the Leibniz rule for [X, Y].
Exercise!
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The Lie Bracket

Example
Locally, let X = 0; and Y = 0;. Then

[X,Y]=0.

Example
Let X = yOy, Y =0, on R% Then

(X, Y] = 0.

Example
Let X = fOx + g0y, Y = hOx + kO, on R?. Then

[X, Y] = (fhy+ghy, — hf— kf, )+ (fky+8k, — hgx — kg, )0, = (ghy —hf)+
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Directional Derivative

e Let X, Y :R3 — R3 be vector fields, which we may write uniquely as
X(u) = X*(u)ex + X (u)e, + X*(u)ey, u=(x,y,z) € R
and similarly for Y.

Definition
The directional derivative, Dx Y is the vector field,

wﬂmwﬁwwaww+ww@ww+wwawwh
ﬁww@wm+ww@ww+wwawwh

ﬂﬂ@@W@+W@@W@+W@@WMF

@ That is, we just differentiate the components:
DxY = (DxY*)ex + (DxY”)e, + (Dx Y?)e,.
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Directional Derivative on R?

@ Perhaps a more familiar way to write Dx Y is as follows:
e On R?, write X = (a,b), Y = (u,v). Then

ou Ju Ov v
DXY = <38_X + b@,aa—x + b@) .

@ In terms of the basis e, = (1,0), e, = (0,1), this is the same as
above, just with less components (4 as opposed to 9):

DxY = (adxu + bd,u) ex + (adxv + by v) ey.
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Directional Derivative
@ We may also interpret the directional derivative as
DxY = Otle=0 Y (7(t))

where 7/(0) = X.

@ Partial Derivatives
Oxf(u) = O¢|t=of (u + tex) = De,f,
and
OxY =De Y = 0xYex +0<Y7Ve, + 0xYe,.
@ We may think of directional derivatives as an operator on smooth
functions and vector fields:
Dxif'—>Dxf, DxiY'—>DXy
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Notation for Vector Fields
@ Since Oxf = D f, we write
ex = 0Ox,e, = 0y,6;, = 0.
and
X = X0« + XV0, + X?0,
Then

3
DxY = > X'(9;Y))9,
ij=1
where x; = x,x2 = y,x3 = z and 0; = 0O,.
@ Einstein Summation Notation (because writing > is too much
effort!):
DxY = X'9;Y19;

and anytime there is an upper index repeated as a lower index, there
is an implies sum:For example

3

X’@; = ZX’@; = X161 + X282 + X383.
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First Attempt at Directional Derivative on a Regular
Surface

Definition (First Attempt)

Let S be a regular surface, with X, Y : S — R3 tangent vector fields.
Define
VxY = DxY.

Example (On the Sphere)
Let X = (1 — x?, —xy, —xz). Then
DxX = [(1 — x%)0x — xyd, — xz@z} [(1 — x%)0x — xyd, — xz8z]
= [0 = (=208 + [(1 = ) (=y) — v(-)] 9y

+ (1= x®)(=2) - xz(~x)] 0.
= (2x3 = 2x)0x + (2x%y — y)dy + (2x°z — 2)0;.

Paul Bryan MATH704 Differential Geometry 19/32



First Attempt at Directional Derivative on a Regular
Surface
Example (On the Sphere (continued))
o We have DxX = (2x3 — 2x)0x + (2x%y — y)0, + (2x°z — 2)0,.
@ Recall N(u) = (x,y,z) = x0x + y0, + 20,
e But

(Dx X, N) = <(2x3 — 25)0 + (2%y — y)dy + (2x°z — 2)0s,
X0y + ydy + 20, )
= x(2x3 — 2x) + y(2x%y — y) + z(2x%z — 2)
=222+ y? +22) — x> — (xX* + y? + 2?)

=x%—1.

o Therefore (DxX(u), N(u)) = x> — 1 # 0 and hence Dx X is not
tangent in general.
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Covariant Derivative

Definition
The covariant derivative Vx Y is defined by

VxY = DxY — (DxY,N)N

That is,
VxY =n1s(DxY)

is the projection of Dx Y onto the tangent space!
Explicitly, we can see Vx Y is tangential:

(VxY,N) = (DxY — (DxY,N)N,N) = (Dx Y, N)—(Dx Y, N) (N, N) = 0

since the normal is unit length: (N, N) = 1.
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Covariant Derivative on the Sphere

On the sphere, we simply have

VxY(u)=DxY(u)— (DxY(u),u) u.

Example (On the Sphere (revisited))
For X = (1 — x2, —xy, —xz) we have
DxX = (2x3 — 2x)0x + (2x%y — )0, + (2x*z — 2)0,.

and
(DxX,N) = x> —1.
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Covariant Derivative on the Sphere

Example (On the Sphere (revisited))
Thus

VxX = (23 = 2x)0x + (2x3y — y)9y + (2x*z — 2)0,
—(x* - 1)[X8X +yo0, + z@z]
= [(2x® — 2x) — x(x* — 1)] O«
+[(2x%y —y) - y(x* = 1)]9,
+ [(2x22 —z)— z(x?® - 1)]0,
= (x® = x)0x + x%yd, + x*z0,

Check:

(VxY, Ny = ((x* = x)0x + x*y0, + x*20,,x0x + yd, + 20;)
=x* = x* +x%y? + x°2°

=x*(x*+y*+22-1)=0.
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Covariant Derivatives on Manifolds
Definition
A covariant derivative is a map

(X, Y) — VxY
with Vx Y a vector field, and such that for functions f, f!, f?: M — R,
© Linearity in X: Vax 1r2x Y = flVx Y + 2V — X2Y.

@ Additivity in Y: Vx(Y1+ Y2) = VxY1 + VxYa.
© Product (Leibniz) rule: Vx(fY) =df(X)Y + fVxY.

o Check directly D is a covariant derivative on R3.
@ On a regular surface (Product Rule. You should check linearity in X!):

Vx(fY) = Dx(fY) — (Dx(fY), N) N
— dF(X)Y + DxY — (dF(X)Y + fDx Y, N) N
— f(DxY — (DxY, N} N) + df(X)Y
=fVxY +df(X)Y.
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Coordinate Vector Fields and Christoffel Symbols
In local coordinates p : UC S — V C R?,

X = X"y + XY8,, Y = Y9, + Y"0,.

Let Z = VxY. We want to work out ZY, Z" in terms of X“ XV, Y!Y YV.
Linearity:

VxY = X"V (YU0,)+ X"V, (Y'0,)+X Vo, (YU8,)+X "V, (Y'0,)

Product rule:
Vo, (YY0,) = (VuY")0u+ YUV 0,

Christoffel Symbols. Write V0, in terms of 9,,0,:

Vudy = T4,8, +T%,0,.

VxY = X'V (YI0)) = X' (0, Y)o+X YTk, = (X"a,- 2 x’ykr{k) 0
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Example: Polar Coordinates
Choose local coordinates (r, ) for the plane:

d(r,0) = (rcosf,rsinf), ¢ (x,y) = (Vx2+ y2,arctan(y/x)).

X Yy

Or — 0
X2y xR ’

y X

0 19)
VX2 4 y? r+X2+y2 ’

O = cos 00y + sin 60, Ox =

Op = —rsin00x + rcos 00, Oy =

Darar = Dcos 00,+sin 09, COS 00, + sin 98y
= [(cos 60 + sin 00, cos 0} Ox + [(cos 60« +sin00,)sin 0|0,
= [0 cos0]0 + [0,sin )9, = 0.

Therefore
r=r%=o.
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Example: Polar Coordinates

Dp,0p = Dp, [ — rsin 60y + r cos 98y]

- _ [agrsin 0} Ox + [%rcos 9] dy

= —rcosfld; — rsin60,
= —r0,.
Therefore

Fog=—r Tgy=0.

Exercise: Calculate

Do, 0 = T190r + 7905
Dagar = rgrar + rgrae
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Metric compatability

For a Riemannian manifold (M, g) with X, Y vector fields we have

x = [8(X, Y)I(x) == gx(X(x), Y(x))

is a smooth function.
In coordinates,

g(X,Y) =g(X'0:,Y/0,) = X'Yig(0:,0)) :== X'Yigj.
Definition
A connection is metric compatible if

Oxlg(Y,2)) = g(VxY,Z)+g(Y,Vx2).
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Torsion

@ Given two vector fields X, Y, we have a commutator: VxY — VyX.

@ It may be that this is non-zero simply because X and Y fail to
commute.

@ For example, with the Directional derivative on R”,
DxY — Dy X = [X, Y]
since DxY = Ox Y'0; is just differentiating the components.

Definition

The torsion tensor of a connection is

T(X,Y)=VxY —VyX—[X, VY]

A connection is torsion free if T(X,Y) =0 for all X,Y.
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Fundamental Theorem of Riemannian Geometry

Theorem

Given a Riemannian manifold (M, g), there exists a unique metric
compatible, torsion free connection. This connection is referred to as the
Levi-Civita connection, or Riemannian connection.

Proof.
VxY is uniquely defined by the Koszul formula

2g(VxY,Z) = 0x(g(Y,Z)) + 9v(g(X, Z)) — 9z(g(X, Y))
—|—g([X, Y]?Z) —g([Y,Z],X) +g([Z,X], Y)'
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Fundamental Theorem of Riemannian Geometry

o For fixed X, Y, the right hand side is a linear function of Z, thus
there exists a unique vector W such that g(W,Z) = RHS(Z).

@ Then we define VxY = 1W.
@ Then one can check this satisfies the definition of a connection.

@ The formula is derived by assuming a metric compatible, torsion free
connection exists and showing it must satisfy the Koszul formula
which establishes uniqueness.

In coordinates

1
M50k = Vi0; = Egk/ (9igij + 981 — 018ij) Or-
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