MATH704 Differential Geometry

Macquarie University, Semester 22018

Paul Bryan

Lecture Twelve: Differentiation

(1) Lecture Twelve: Differentiation

- Vector Fields
- Connections
- Riemannian (Levi-Civita) Connection

Lecture Twelve: Differentiation - Vector Fields

(1) Lecture Twelve: Differentiation

- Vector Fields
- Connections
- Riemannian (Levi-Civita) Connection

Vector Fields

Definition

A vector field on a smooth manifold is a smooth function $X: M \rightarrow T M$ such that $X(x) \in T_{x} M$ for each $x \in M$.

- Smoothness means:

In local coordinates (i.e. in a chart U), we may uniquely write:

$$
X(x)=X^{1}(x) e_{1}(x)+\cdots+X^{n}(x) e_{n}(x)
$$

where e_{1}, \cdots, e_{n} are the coordinate vector fields.
Then X is smooth if the functions $X^{i}: U \rightarrow \mathbb{R}$ are smooth.

Some Examples

Example (On the cylinder)

$$
X(x, y, z)=(-y, x, 0), \quad X(z, \theta)=(-\sin \theta, \cos \theta, 0)
$$

Example (On the sphere)

$$
X(x, y, z)=(1,0,0)-\langle(1,0,0),(x, y, z)\rangle(x, y, z)=\left(1-x^{2},-x y,-x z\right)
$$

Example (On a graph, $S=\{(u, v, f(u, v))\})$

$$
X(u, v)=\left(1,0, f_{u}(u, v)\right), \quad X(u, v)=\left(0,1, f_{v}(u, v)\right)
$$

Tangent Vectors as Derivations

Definition

A tangent vector acts as a local derivation: For $V \in T M$, with $x=\pi(X)$ and $f: M \rightarrow \mathbb{R}$ a smooth function:

$$
V(f):=d f_{x} \cdot V=\left.\partial_{t}\right|_{t=0} f(\gamma(t))
$$

where $V=[\gamma]$.

- Here $V(f) \in \mathbb{R}$ is a real number. In a chart φ :

$$
V(f)=\left.d\left(f \circ \varphi^{-1}\right)\right|_{\varphi(x)} \cdot(\varphi \circ \gamma)^{\prime}(0)
$$

- Note that f is smooth provided $f \circ \varphi^{-1}$ is smooth for any chart and γ is smooth provided $\varphi \circ \gamma$ is smooth for any chart.
- Notice that
$\left.d\left(f \circ \varphi^{-1}\right)\right|_{\varphi(x)} \cdot(\varphi \circ \gamma)^{\prime}(0)=\left.\partial_{t}\right|_{t=0}\left[\left(f \circ \varphi^{-1}\right) \circ(\varphi \circ \gamma)\right]=\left.\partial_{t}\right|_{t=0} f(\gamma(t))$
is independent of the choice of chart.

Vector Fields as Derivations

Definition

Let $X: M \rightarrow T M$ be a vector field and $f: M \rightarrow \mathbb{R}$ a smooth function. Then we define a new smooth function,

$$
X(f)(x)=d f_{x}(X(x))
$$

- Sometimes, we write $X(f)$ as $\partial_{X} f$ to emphasise that f is differentiated in the direction X.
- In a chart, with $X=X^{1} e_{1}+\cdots+X^{n} e_{n}$ we have

$$
\left(\partial_{X} f\right)\left(\varphi^{-1}(y)\right)=X^{1}(y) \frac{\partial f}{\partial y^{1}}(y)+\cdots X^{n}(y) \frac{\partial f}{\partial x^{n}}(y)=D_{X} f
$$

the usual directional derivative on \mathbb{R}^{n}.

- In particular, if E_{i} is a coordinate vector field we write ∂_{i} for E_{i} since

$$
E_{i}(f)=\frac{\partial f}{\partial x^{i}}
$$

Leibniz Product Rule

Lemma

Let $f, g: e M \rightarrow \mathbb{R}$ be smooth functions. For a tangent vector $V \in T M$ with $x=\pi(V)$, we have

$$
V(f g)=f(x) V(g)+g(x) V(f)
$$

For a vector field X, we have

$$
\partial_{X}(f g)(x)=f(x) \partial_{X} g(x)+g(x) \partial_{X} f(x)
$$

- The proof follows from the corresponding rule for the directional derivative in \mathbb{R}^{n} !

Dependence on X and f

Lemma

Let X be a vector field and f be a function. Then at a point $x \in M$, $\partial_{X} f(x)$ depends on f in a neighbourhood of x (in fact it only on f restricted to γ where $\gamma^{\prime}(0)=X$) but only on the value $X(x)$ of X at x.

- If f, g are functions such that $f \equiv g$ on an open neighbourhood $U \subseteq M$, then $\partial_{X} f(x)=\partial_{X} g(x)$ for every $x \in M$.
- In fact, if γ is any curve with $X=[\gamma]$, then we only need $f \circ \gamma=g \circ \gamma$.
- On the other hand, if X and Y are vector fields such that $X(x)=Y(x)$, then $\partial_{X} f(x)=\partial_{Y} f(x)$ even if $X(y) \neq Y(y)$ for every $y \neq x$.

Thus $\partial_{X} f(x)$ depends on f at nearby points to x but only on X at the point x itself.

The Lie Bracket

Definition

The Lie Bracket $[X, Y$] of two vector fields X, Y is defined by

$$
[X, Y] f=\partial_{X} f \partial_{Y} f-\partial_{Y} \partial_{X} f .
$$

- The point is that although $[X, Y]$ includes second derivatives of f, they all cancel and only first derivatives are left!
- In a chart

$$
\partial_{X} \partial_{Y} f=\partial_{X}\left(\sum_{i=1}^{n} Y^{i} \partial_{i} f\right)=\sum_{j=1}^{n} \sum_{i=1}^{n} X^{j} Y^{i} \partial_{j} \partial_{i} f+X^{j} \partial_{j} Y^{i} \partial_{i} f
$$

and

$$
\partial_{Y} \partial_{X} f=\sum_{i=1}^{n} \sum_{j=1}^{n} Y^{i} X^{j} \partial_{i} \partial_{j} f+Y^{i} \partial_{i} X^{j} \partial_{j} f
$$

The Lie Bracket

Now we have

$$
\begin{aligned}
\partial_{X} \partial_{Y} f-\partial_{Y} \partial_{X} f= & \sum_{i, j} X^{j} Y^{i} \partial_{j} \partial_{i} f+X^{j} \partial_{j} Y^{i} \partial_{i} f \\
& -\sum_{i, j} Y^{i} X^{j} \partial_{i} \partial_{j} f+Y^{i} \partial_{i} X^{j} \partial_{j} f \\
= & \sum_{i, j} X^{j} \partial_{j} Y^{i} \partial_{i} f-\sum_{i, j} Y^{i} \partial_{i} X^{j} \partial_{j} f \\
= & \sum_{i, j} X^{j} \partial_{j} Y^{i} \partial_{i} f-\sum_{i, j} Y^{j} \partial_{j} X^{i} \partial_{i} f \\
= & \sum_{i}\left[\sum_{j} X^{j} \partial_{j} Y^{i}-Y^{j} \partial_{j} X^{i}\right] \partial_{i} f \\
= & \sum_{i}\left[\partial_{X} Y^{i}-\partial_{Y} X^{i}\right] \partial_{i} f .
\end{aligned}
$$

The Lie Bracket

That is we have $Z=[X, Y]$ is a vector field expressed in coordinates as

$$
Z=Z^{i} \partial_{i}
$$

with

$$
Z^{i}=\partial_{X} Y^{i}-\partial_{Y} X^{i}
$$

- The Lie bracket is a commutator. It measures the effect of applying Y and then X compared with applying X and then Y.
- It involves derivatives of both X and Y and thus depends on both X and Y in an open neighbourhood.
- Using the Leibniz rule we can verify the Leibniz rule for $[X, Y]$. Exercise!

The Lie Bracket

Example

Locally, let $X=\partial_{i}$ and $Y=\partial_{j}$. Then

$$
[X, Y]=0
$$

Example

Let $X=y \partial_{x}, Y=\partial_{y}$ on \mathbb{R}^{2}. Then

$$
[X, Y]=-\partial_{x}
$$

$h_{x}=0, f_{y}=0$
Example
Let $X=f \partial_{x}+g \partial_{y}, Y=h \partial_{x}+k \partial_{y}$ on \mathbb{R}^{2}. Then
$[X, Y]=\left(f h_{x}+g h_{y}-h f_{x}-k f_{y}\right) \partial_{x}+\left(f k_{x}+g k_{y}-h g_{x}-k g_{y}\right) \partial_{y}=\left(g h_{y}-h f_{x}\right)+$

Lecture Twelve: Differentiation - Connections

(1) Lecture Twelve: Differentiation

- Vector Fields
- Connections
- Riemannian (Levi-Civita) Connection

Directional Derivative

- Let $X, Y: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be vector fields, which we may write uniquely as

$$
X(u)=X^{x}(u) e_{x}+X^{y}(u) e_{y}+X^{z}(u) e_{z}, \quad u=(x, y, z) \in \mathbb{R}^{3} .
$$

and similarly for Y.

Definition

The directional derivative, $D_{X} Y$ is the vector field,

$$
\begin{aligned}
\left(D_{X} Y\right)(u) & =\left[X^{x}(u) \partial_{x} Y^{x}(u)+X^{y}(u) \partial_{y} Y^{x}(u)+X^{z}(u) \partial_{z} Y^{x}(u)\right] e_{x} \\
& +\left[X^{x}(u) \partial_{x} Y^{y}(u)+X^{y}(u) \partial_{y} Y^{y}(u)+X^{z}(u) \partial_{z} Y^{y}(u)\right] e_{y} \\
& +\left[X^{x}(u) \partial_{x} Y^{z}(u)+X^{y}(u) \partial_{y} Y^{z}(u)+X^{z}(u) \partial_{z} Y^{z}(u)\right] e_{z}
\end{aligned}
$$

- That is, we just differentiate the components:

$$
D_{X} Y=\left(D_{X} Y^{x}\right) e_{x}+\left(D_{X} Y^{y}\right) e_{y}+\left(D_{X} Y^{z}\right) e_{z}
$$

Directional Derivative on \mathbb{R}^{2}

- Perhaps a more familiar way to write $D_{X} Y$ is as follows:
- On \mathbb{R}^{2}, write $X=(a, b), Y=(u, v)$. Then

$$
D_{X} Y=\left(a \frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}, a \frac{\partial v}{\partial x}+b \frac{\partial v}{\partial y}\right)
$$

- In terms of the basis $e_{x}=(1,0), e_{y}=(0,1)$, this is the same as above, just with less components (4 as opposed to 9):

$$
D_{X} Y=\left(a \partial_{x} u+b \partial_{y} u\right) e_{x}+\left(a \partial_{x} v+b \partial_{y} v\right) e_{y}
$$

Directional Derivative

- We may also interpret the directional derivative as

$$
D_{X} Y=\left.\partial_{t}\right|_{t=0} Y(\gamma(t))
$$

where $\gamma^{\prime}(0)=X$.

- Partial Derivatives

$$
\partial_{x} f(u)=\left.\partial_{t}\right|_{t=0} f\left(u+t e_{x}\right)=D_{e_{x}} f
$$

and

$$
\partial_{x} Y=D_{e_{x}} Y=\partial_{x} Y^{x} e_{x}+\partial_{x} Y^{y} e_{y}+\partial_{x} Y^{x} e_{z}
$$

- We may think of directional derivatives as an operator on smooth functions and vector fields:

$$
D_{X}: f \mapsto D_{X} f, \quad D_{X}: Y \mapsto D_{X} Y
$$

Notation for Vector Fields

- Since $\partial_{x} f=D_{e_{x}} f$, we write

$$
e_{x}=\partial_{x}, e_{y}=\partial_{y}, e_{z}=\partial_{z}
$$

and

$$
X=X^{x} \partial_{x}+X^{y} \partial_{y}+X^{z} \partial_{z}
$$

Then

$$
D_{X} Y=\sum_{i, j=1}^{3} X^{i}\left(\partial_{i} Y^{j}\right) \partial_{j}
$$

where $x_{1}=x, x_{2}=y, x_{3}=z$ and $\partial_{i}=\partial_{x_{i}}$.

- Einstein Summation Notation (because writing \sum is too much effort!):

$$
D_{X} Y=X^{i} \partial_{i} Y^{j} \partial_{j}
$$

and anytime there is an upper index repeated as a lower index, there is an implies sum:For example

$$
X^{i} \partial_{i}=\sum^{3} X^{i} \partial_{i}=X^{1} \partial_{1}+X^{2} \partial_{2}+X^{3} \partial_{3}
$$

First Attempt at Directional Derivative on a Regular

 SurfaceDefinition (First Attempt)
Let S be a regular surface, with $X, Y: S \rightarrow \mathbb{R}^{3}$ tangent vector fields. Define

$$
\nabla_{X} Y=D_{X} Y
$$

Example (On the Sphere)
Let $X=\left(1-x^{2},-x y,-x z\right)$. Then

$$
\begin{aligned}
D_{x} X= & {\left[\left(1-x^{2}\right) \partial_{x}-x y \partial_{y}-x z \partial_{z}\right]\left[\left(1-x^{2}\right) \partial_{x}-x y \partial_{y}-x z \partial_{z}\right] } \\
= & {\left[\left(1-x^{2}\right)(-2 x)\right] \partial_{x}+\left[\left(1-x^{2}\right)(-y)-x y(-x)\right] \partial_{y} } \\
& +\left[\left(1-x^{2}\right)(-z)-x z(-x)\right] \partial_{z} \\
= & \left(2 x^{3}-2 x\right) \partial_{x}+\left(2 x^{2} y-y\right) \partial_{y}+\left(2 x^{2} z-z\right) \partial_{z} .
\end{aligned}
$$

First Attempt at Directional Derivative on a Regular

 Surface
Example (On the Sphere (continued))

- We have $D_{X} X=\left(2 x^{3}-2 x\right) \partial_{x}+\left(2 x^{2} y-y\right) \partial_{y}+\left(2 x^{2} z-z\right) \partial_{z}$.
- Recall $N(u)=(x, y, z)=x \partial_{x}+y \partial_{y}+z \partial_{z}$
- But

$$
\begin{aligned}
\left\langle D_{X} X, N\right\rangle= & \left\langle\left(2 x^{3}-2 x\right) \partial_{x}+\left(2 x^{2} y-y\right) \partial_{y}+\left(2 x^{2} z-z\right) \partial_{z},\right. \\
& \left.x \partial_{x}+y \partial_{y}+z \partial_{z}\right\rangle \\
= & x\left(2 x^{3}-2 x\right)+y\left(2 x^{2} y-y\right)+z\left(2 x^{2} z-z\right) \\
= & 2 x^{2}\left(x^{2}+y^{2}+z^{2}\right)-x^{2}-\left(x^{2}+y^{2}+z^{2}\right) \\
= & x^{2}-1 .
\end{aligned}
$$

- Therefore $\left\langle D_{X} X(u), N(u)\right\rangle=x^{2}-1 \not \equiv 0$ and hence $D_{X} X$ is not tangent in general.

Covariant Derivative

Definition

The covariant derivative $\nabla_{X} Y$ is defined by

$$
\nabla_{X} Y=D_{X} Y-\left\langle D_{X} Y, N\right\rangle N
$$

That is,

$$
\nabla_{X} Y=\pi_{T S}\left(D_{X} Y\right)
$$

is the projection of $D_{X} Y$ onto the tangent space! Explicitly, we can see $\nabla_{X} Y$ is tangential:
$\left\langle\nabla_{X} Y, N\right\rangle=\left\langle D_{X} Y-\left\langle D_{X} Y, N\right\rangle N, N\right\rangle=\left\langle D_{X} Y, N\right\rangle-\left\langle D_{X} Y, N\right\rangle\langle N, N\rangle=0$ since the normal is unit length: $\langle N, N\rangle=1$.

Covariant Derivative on the Sphere

On the sphere, we simply have

$$
\nabla_{X} Y(u)=D_{X} Y(u)-\left\langle D_{X} Y(u), u\right\rangle u
$$

Example (On the Sphere (revisited))
For $X=\left(1-x^{2},-x y,-x z\right)$ we have

$$
D_{X} X=\left(2 x^{3}-2 x\right) \partial_{x}+\left(2 x^{2} y-y\right) \partial_{y}+\left(2 x^{2} z-z\right) \partial_{z}
$$

and

$$
\left\langle D_{X} X, N\right\rangle=x^{2}-1
$$

Covariant Derivative on the Sphere

Example (On the Sphere (revisited))

Thus

$$
\begin{aligned}
\nabla_{X} X= & \left(2 x^{3}-2 x\right) \partial_{x}+\left(2 x^{2} y-y\right) \partial_{y}+\left(2 x^{2} z-z\right) \partial_{z} \\
& -\left(x^{2}-1\right)\left[x \partial_{x}+y \partial_{y}+z \partial_{z}\right] \\
= & {\left[\left(2 x^{3}-2 x\right)-x\left(x^{2}-1\right)\right] \partial_{x} } \\
& +\left[\left(2 x^{2} y-y\right)-y\left(x^{2}-1\right)\right] \partial_{y} \\
& +\left[\left(2 x^{2} z-z\right)-z\left(x^{2}-1\right)\right] \partial_{z} \\
= & \left(x^{3}-x\right) \partial_{x}+x^{2} y \partial_{y}+x^{2} z \partial_{z}
\end{aligned}
$$

Check:

$$
\begin{aligned}
\left\langle\nabla_{X} Y, N\right\rangle & =\left\langle\left(x^{3}-x\right) \partial_{x}+x^{2} y \partial_{y}+x^{2} z \partial_{z}, x \partial_{x}+y \partial_{y}+z \partial_{z}\right\rangle \\
& =x^{4}-x^{2}+x^{2} y^{2}+x^{2} z^{2} \\
& =x^{2}\left(x^{2}+y^{2}+z^{2}-1\right)=0 .
\end{aligned}
$$

Covariant Derivatives on Manifolds

Definition

A covariant derivative is a map

$$
(X, Y) \mapsto \nabla_{X} Y
$$

with $\nabla_{X} Y$ a vector field, and such that for functions $f, f^{1}, f^{2}: M \rightarrow \mathbb{R}$,
(1) Linearity in $X: \nabla_{f^{1} X_{1}+f^{2} X_{2}} Y=f^{1} \nabla_{X^{1}} Y+f^{2} \nabla-X^{2} Y$.
(2) Additivity in $Y: \nabla_{X}\left(Y_{1}+Y_{2}\right)=\nabla_{X} Y_{1}+\nabla_{X} Y_{2}$.
(3) Product (Leibniz) rule: $\nabla_{X}(f Y)=d f(X) Y+f \nabla_{X} Y$.

- Check directly D is a covariant derivative on \mathbb{R}^{3}.
- On a regular surface (Product Rule. You should check linearity in X !):

$$
\begin{aligned}
\nabla_{X}(f Y) & =D_{X}(f Y)-\left\langle D_{X}(f Y), N\right\rangle N \\
& =d f(X) Y+f D_{X} Y-\left\langle d f(X) Y+f D_{X} Y, N\right\rangle N \\
& =f\left(D_{X} Y-\left\langle D_{X} Y, N\right\rangle N\right)+d f(X) Y \\
& =f \nabla_{X} Y+d f(X) Y
\end{aligned}
$$

Coordinate Vector Fields and Christoffel Symbols

In local coordinates $\varphi: U \subseteq S \rightarrow V \subseteq \mathbb{R}^{2}$,

$$
X=X^{u} \partial_{u}+X^{v} \partial_{v}, \quad Y=Y^{u} \partial_{u}+Y^{v} \partial_{v} .
$$

Let $Z=\nabla_{X} Y$. We want to work out Z^{u}, Z^{v} in terms of $X^{u}, X^{v}, Y^{u}, Y^{v}$. Linearity:

$$
\nabla_{X} Y=X^{u} \nabla_{\partial_{u}}\left(Y^{u} \partial_{u}\right)+X^{u} \nabla_{\partial_{u}}\left(Y^{v} \partial_{v}\right)+X^{v} \nabla_{\partial_{v}}\left(Y^{u} \partial_{u}\right)+X^{v} \nabla_{\partial_{v}}\left(Y^{v} \partial_{v}\right)
$$

Product rule:

$$
\nabla_{\partial_{u}}\left(Y^{u} \partial_{u}\right)=\left(\nabla_{u} Y^{u}\right) \partial_{u}+Y^{u} \nabla_{u} \partial_{u}
$$

Christoffel Symbols. Write $\nabla_{u} \partial_{u}$ in terms of $\partial_{u}, \partial_{V}$:

$$
\nabla_{u} \partial_{u}=\Gamma_{u u}^{u} \partial_{u}+\Gamma_{u u}^{v} \partial_{v} .
$$

$\nabla_{X} Y=X^{i} \nabla_{\partial_{i}}\left(Y^{j} \partial_{j}\right)=X^{i}\left(\partial_{i} Y^{j}\right) \partial_{j}+X^{i} Y^{j} \Gamma_{i j}^{k} \partial_{k}=\left(X^{i} \partial_{i} Y^{j}+X^{i} Y^{k} \Gamma_{i k}^{j}\right) \partial_{j}$

Example: Polar Coordinates

Choose local coordinates (r, θ) for the plane:

$$
\begin{aligned}
\phi(r, \theta) & =(r \cos \theta, r \sin \theta), \quad \phi^{-1}(x, y)=\left(\sqrt{x^{2}+y^{2}}, \arctan (y / x)\right) \\
\partial_{r} & =\cos \theta \partial_{x}+\sin \theta \partial_{y} \quad \quad \partial_{x}=\frac{x}{\sqrt{x^{2}+y^{2}}} \partial_{r}-\frac{y}{x^{2}+y^{2}} \partial_{\theta} \\
\partial_{\theta} & =-r \sin \theta \partial_{x}+r \cos \theta \partial_{y} \quad \partial_{y}=\frac{y}{\sqrt{x^{2}+y^{2}}} \partial_{r}+\frac{x}{x^{2}+y^{2}} \partial_{\theta} \\
D_{\partial_{r}} \partial_{r} & =D_{\cos \theta \partial_{x}+\sin \theta \partial_{y} \cos \theta \partial_{x}+\sin \theta \partial_{y}} \\
& =\left[\left(\cos \theta \partial_{x}+\sin \theta \partial_{y}\right) \cos \theta\right] \partial_{x}+\left[\left(\cos \theta \partial_{x}+\sin \theta \partial_{y}\right) \sin \theta\right] \partial_{y} \\
& =\left[\partial_{r} \cos \theta\right] \partial_{x}+\left[\partial_{r} \sin \theta\right] \partial_{y}=0
\end{aligned}
$$

Therefore

$$
\Gamma_{r r}^{r}=\Gamma_{r r}^{\theta}=0
$$

Example: Polar Coordinates

$$
\begin{aligned}
D_{\partial_{\theta}} \partial_{\theta} & =D_{\partial_{\theta}}\left[-r \sin \theta \partial_{x}+r \cos \theta \partial_{y}\right] \\
& =-\left[\partial_{\theta} r \sin \theta\right] \partial_{x}+\left[\partial_{\theta} r \cos \theta\right] \partial_{y} \\
& =-r \cos \theta \partial_{x}-r \sin \theta \partial_{y} \\
& =-r \partial_{r}
\end{aligned}
$$

Therefore

$$
\Gamma_{\theta \theta}^{r}=-r \quad \Gamma_{\theta \theta}^{\theta}=0 .
$$

Exercise: Calculate

$$
\begin{aligned}
& D_{\partial_{r}} \partial_{\theta}=\Gamma_{r \theta}^{r} \partial_{r}+\Gamma_{r \theta}^{\theta} \partial_{\theta} \\
& D_{\partial_{\theta}} \partial_{r}=\Gamma_{\theta r}^{r} \partial_{r}+\Gamma_{\theta r}^{\theta} \partial_{\theta}
\end{aligned}
$$

Lecture Twelve: Differentiation - Riemannian (Levi-Civita) Connection

(1) Lecture Twelve: Differentiation

- Vector Fields
- Connections
- Riemannian (Levi-Civita) Connection

Metric compatability

For a Riemannian manifold (M, g) with X, Y vector fields we have

$$
x \mapsto[g(X, Y)](x):=g_{x}(X(x), Y(x))
$$

is a smooth function.
In coordinates,

$$
g(X, Y)=g\left(X^{i} \partial_{i}, Y^{j} \partial_{j}\right)=X^{i} Y^{j} g\left(\partial_{i}, \partial_{j}\right):=X^{i} Y^{j} g_{i j}
$$

Definition

A connection is metric compatible if

$$
\partial_{X}[g(Y, Z)]=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

Torsion

- Given two vector fields X, Y, we have a commutator: $\nabla_{X} Y-\nabla_{Y} X$.
- It may be that this is non-zero simply because X and Y fail to commute.
- For example, with the Directional derivative on \mathbb{R}^{n},

$$
D_{X} Y-D_{Y} X=[X, Y]
$$

since $D_{X} Y=\partial_{X} Y^{i} \partial_{i}$ is just differentiating the components.

Definition

The torsion tensor of a connection is

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

A connection is torsion free if $T(X, Y)=0$ for all X, Y.

Fundamental Theorem of Riemannian Geometry

Theorem

Given a Riemannian manifold (M, g), there exists a unique metric compatible, torsion free connection. This connection is referred to as the Levi-Civita connection, or Riemannian connection.

Proof.

$\nabla_{X} Y$ is uniquely defined by the Koszul formula

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & \partial_{X}(g(Y, Z))+\partial_{Y}(g(X, Z))-\partial_{Z}(g(X, Y)) \\
& +g([X, Y], Z)-g([Y, Z], X)+g([Z, X], Y)
\end{aligned}
$$

Fundamental Theorem of Riemannian Geometry

- For fixed X, Y, the right hand side is a linear function of Z, thus there exists a unique vector W such that $g(W, Z)=R H S(Z)$.
- Then we define $\nabla_{X} Y=\frac{1}{2} W$.
- Then one can check this satisfies the definition of a connection.
- The formula is derived by assuming a metric compatible, torsion free connection exists and showing it must satisfy the Koszul formula which establishes uniqueness.

In coordinates

$$
\Gamma_{i j}^{k} \partial_{k}:=\nabla_{\partial i} \partial_{j}=\frac{1}{2} g^{k l}\left(\partial_{i} g_{l j}+\partial_{j} g_{i l}-\partial_{l} g_{i j}\right) \partial_{k}
$$

