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Vector Fields

Definition
A vector field on a smooth manifold is a smooth function X : M → TM
such that X (x) ∈ TxM for each x ∈ M.

Smoothness means:
In local coordinates (i.e. in a chart U), we may uniquely write:

X (x) = X 1(x)e1(x) + · · ·+ Xn(x)en(x)

where e1, · · · , en are the coordinate vector fields.
Then X is smooth if the functions X i : U → R are smooth.
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Some Examples

Example (On the cylinder)

X (x , y , z) = (−y , x , 0), X (z , θ) = (− sin θ, cos θ, 0)

Example (On the sphere)

X (x , y , z) = (1, 0, 0)− 〈(1, 0, 0), (x , y , z)〉 (x , y , z) = (1 − x2,−xy ,−xz)

Example (On a graph, S = {(u, v , f (u, v))})

X (u, v) = (1, 0, fu(u, v)), X (u, v) = (0, 1, fv (u, v))
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Tangent Vectors as Derivations
Definition
A tangent vector acts as a local derivation: For V ∈ TM, with x = π(X )
and f : M → R a smooth function:

V (f ) := dfx · V = ∂t |t=0f (γ(t))

where V = [γ].

Here V (f ) ∈ R is a real number. In a chart ϕ:
V (f ) = d(f ◦ ϕ−1)|ϕ(x) · (ϕ ◦ γ)′(0).

Note that f is smooth provided f ◦ ϕ−1 is smooth for any chart and γ
is smooth provided ϕ ◦ γ is smooth for any chart.
Notice that
d(f ◦ϕ−1)|ϕ(x)·(ϕ◦γ)′(0) = ∂t |t=0

[
(f ◦ ϕ−1) ◦ (ϕ ◦ γ)

]
= ∂t |t=0f (γ(t))

is independent of the choice of chart.
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Vector Fields as Derivations
Definition
Let X : M → TM be a vector field and f : M → R a smooth function.
Then we define a new smooth function,

X (f )(x) = dfx (X (x)).

Sometimes, we write X (f ) as ∂X f to emphasise that f is
differentiated in the direction X .
In a chart, with X = X 1e1 + · · ·+ Xnen we have

(∂X f )(ϕ−1(y)) = X 1(y) ∂f
∂y1 (y) + · · ·Xn(y) ∂f

∂xn (y) = DX f

the usual directional derivative on Rn.
In particular, if Ei is a coordinate vector field we write ∂i for Ei since

Ei(f ) =
∂f
∂x i .
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Leibniz Product Rule

Lemma
Let f , g : eM → R be smooth functions. For a tangent vector V ∈ TM
with x = π(V ), we have

V (fg) = f (x)V (g) + g(x)V (f ).

For a vector field X, we have

∂X (fg)(x) = f (x)∂X g(x) + g(x)∂X f (x).

The proof follows from the corresponding rule for the directional
derivative in Rn!
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Dependence on X and f

Lemma
Let X be a vector field and f be a function. Then at a point x ∈ M,
∂X f (x) depends on f in a neighbourhood of x (in fact it only on f
restricted to γ where γ′(0) = X) but only on the value X (x) of X at x.

If f , g are functions such that f ≡ g on an open neighbourhood
U ⊆ M, then ∂X f (x) = ∂X g(x) for every x ∈ M.
In fact, if γ is any curve with X = [γ], then we only need
f ◦ γ = g ◦ γ.
On the other hand, if X and Y are vector fields such that
X (x) = Y (x), then ∂X f (x) = ∂Y f (x) even if X (y) 6= Y (y) for every
y 6= x .

Thus ∂X f (x) depends on f at nearby points to x but only on X at the
point x itself.
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The Lie Bracket
Definition
The Lie Bracket [X ,Y ] of two vector fields X ,Y is defined by

[X ,Y ]f = ∂X f ∂Y f − ∂Y ∂X f .

The point is that although [X ,Y ] includes second derivatives of f ,
they all cancel and only first derivatives are left!
In a chart

∂X∂Y f = ∂X

( n∑
i=1

Y i∂i f
)

=
n∑

j=1

n∑
i=1

X jY i∂j∂i f + X j∂jY i∂i f

and

∂Y ∂X f =
n∑

i=1

n∑
j=1

Y iX j∂i∂j f + Y i∂iX j∂j f .
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The Lie Bracket
Now we have

∂X∂Y f − ∂Y ∂X f =
∑
i ,j

X jY i∂j∂i f + X j∂jY i∂i f

−
∑
i ,j

Y iX j∂i∂j f + Y i∂iX j∂j f

=
∑
i ,j

X j∂jY i∂i f −
∑
i ,j

Y i∂iX j∂j f

=
∑
i ,j

X j∂jY i∂i f −
∑
i ,j

Y j∂jX i∂i f

=
∑

i

∑
j

X j∂jY i − Y j∂jX i

 ∂i f

=
∑

i

[
∂X Y i − ∂Y X i] ∂i f .
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The Lie Bracket

That is we have Z = [X ,Y ] is a vector field expressed in coordinates as

Z = Z i∂i

with
Z i = ∂X Y i − ∂Y X i .

The Lie bracket is a commutator. It measures the effect of applying
Y and then X compared with applying X and then Y .
It involves derivatives of both X and Y and thus depends on both X
and Y in an open neighbourhood.
Using the Leibniz rule we can verify the Leibniz rule for [X ,Y ].
Exercise!
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The Lie Bracket
Example
Locally, let X = ∂i and Y = ∂j . Then

[X ,Y ] = 0.

Example
Let X = y∂x , Y = ∂y on R2. Then

[X ,Y ] = −∂x .

hx = 0, fy = 0

Example
Let X = f ∂x + g∂y , Y = h∂x + k∂y on R2. Then

[X ,Y ] = (fhx+ghy−hfx−kfy )∂x+(fkx+gky−hgx−kgy )∂y = (ghy−hfx )+
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Directional Derivative
Let X ,Y : R3 → R3 be vector fields, which we may write uniquely as

X (u) = X x (u)ex + X y (u)ey + X z(u)ez , u = (x , y , z) ∈ R3.

and similarly for Y .

Definition
The directional derivative, DX Y is the vector field,

(DX Y )(u) =
[
X x (u)∂xY x (u) + X y (u)∂y Y x (u) + X z(u)∂zY x (u)

]
ex

+
[
X x (u)∂xY y (u) + X y (u)∂y Y y (u) + X z(u)∂zY y (u)

]
ey

+
[
X x (u)∂xY z(u) + X y (u)∂y Y z(u) + X z(u)∂zY z(u)

]
ez

That is, we just differentiate the components:
DX Y = (DX Y x )ex + (DX Y y )ey + (DX Y z)ez .
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Directional Derivative on R2

Perhaps a more familiar way to write DX Y is as follows:
On R2, write X = (a, b), Y = (u, v). Then

DX Y =

(
a∂u
∂x + b ∂u

∂y , a
∂v
∂x + b∂v

∂y

)
.

In terms of the basis ex = (1, 0), ey = (0, 1), this is the same as
above, just with less components (4 as opposed to 9):

DX Y = (a∂xu + b∂y u) ex + (a∂xv + b∂y v) ey .
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Directional Derivative
We may also interpret the directional derivative as

DX Y = ∂t |t=0Y (γ(t))

where γ′(0) = X .
Partial Derivatives

∂x f (u) = ∂t |t=0f (u + tex ) = Dex f ,

and
∂xY = Dex Y = ∂xY xex + ∂xY y ey + ∂xY xez .

We may think of directional derivatives as an operator on smooth
functions and vector fields:

DX : f 7→ DX f , DX : Y 7→ DX Y
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Notation for Vector Fields
Since ∂x f = Dex f , we write

ex = ∂x , ey = ∂y , ez = ∂z .

and
X = X x∂x + X y∂y + X z∂z

Then

DX Y =
3∑

i ,j=1
X i(∂iY j)∂j

where x1 = x , x2 = y , x3 = z and ∂i = ∂xi .
Einstein Summation Notation (because writing

∑
is too much

effort!):
DX Y = X i∂iY j∂j

and anytime there is an upper index repeated as a lower index, there
is an implies sum:For example

X i∂i =
3∑

i=1
X i∂i = X 1∂1 + X 2∂2 + X 3∂3.
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First Attempt at Directional Derivative on a Regular
Surface
Definition (First Attempt)
Let S be a regular surface, with X ,Y : S → R3 tangent vector fields.
Define

∇X Y = DX Y .

Example (On the Sphere)
Let X = (1 − x2,−xy ,−xz). Then

DX X =
[
(1 − x2)∂x − xy∂y − xz∂z

][
(1 − x2)∂x − xy∂y − xz∂z

]
=
[
(1 − x2)(−2x)

]
∂x +

[
(1 − x2)(−y)− xy(−x)

]
∂y

+
[
(1 − x2)(−z)− xz(−x)

]
∂z

= (2x3 − 2x)∂x + (2x2y − y)∂y + (2x2z − z)∂z .
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First Attempt at Directional Derivative on a Regular
Surface
Example (On the Sphere (continued))

We have DX X = (2x3 − 2x)∂x + (2x2y − y)∂y + (2x2z − z)∂z .

Recall N(u) = (x , y , z) = x∂x + y∂y + z∂z

But

〈DX X ,N〉 =
〈
(2x3 − 2x)∂x + (2x2y − y)∂y + (2x2z − z)∂z ,

x∂x + y∂y + z∂z
〉

= x(2x3 − 2x) + y(2x2y − y) + z(2x2z − z)
= 2x2(x2 + y2 + z2)− x2 − (x2 + y2 + z2)

= x2 − 1.

Therefore 〈DX X (u),N(u)〉 = x2 − 1 6≡ 0 and hence DX X is not
tangent in general.
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Covariant Derivative

Definition
The covariant derivative ∇X Y is defined by

∇X Y = DX Y − 〈DX Y ,N〉N

That is,
∇X Y = πTS(DX Y )

is the projection of DX Y onto the tangent space!
Explicitly, we can see ∇X Y is tangential:

〈∇X Y ,N〉 = 〈DX Y − 〈DX Y ,N〉N,N〉 = 〈DX Y ,N〉−〈DX Y ,N〉 〈N,N〉 = 0

since the normal is unit length: 〈N,N〉 = 1.
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Covariant Derivative on the Sphere

On the sphere, we simply have

∇X Y (u) = DX Y (u)− 〈DX Y (u), u〉 u.

Example (On the Sphere (revisited))
For X = (1 − x2,−xy ,−xz) we have

DX X = (2x3 − 2x)∂x + (2x2y − y)∂y + (2x2z − z)∂z .

and
〈DX X ,N〉 = x2 − 1.
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Covariant Derivative on the Sphere
Example (On the Sphere (revisited))
Thus

∇X X = (2x3 − 2x)∂x + (2x2y − y)∂y + (2x2z − z)∂z

− (x2 − 1)
[
x∂x + y∂y + z∂z

]
=

[
(2x3 − 2x)− x(x2 − 1)

]
∂x

+
[
(2x2y − y)− y(x2 − 1)

]
∂y

+
[
(2x2z − z)− z(x2 − 1)

]
∂z

= (x3 − x)∂x + x2y∂y + x2z∂z

Check:

〈∇X Y ,N〉 =
〈
(x3 − x)∂x + x2y∂y + x2z∂z , x∂x + y∂y + z∂z

〉
= x4 − x2 + x2y2 + x2z2

= x2(x2 + y2 + z2 − 1) = 0.
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Covariant Derivatives on Manifolds
Definition
A covariant derivative is a map

(X ,Y ) 7→ ∇X Y

with ∇X Y a vector field, and such that for functions f , f 1, f 2 : M → R,
1 Linearity in X : ∇f 1X1+f 2X2Y = f 1∇X1Y + f 2∇− X 2Y .
2 Additivity in Y : ∇X (Y1 + Y2) = ∇X Y1 +∇X Y2.
3 Product (Leibniz) rule: ∇X (fY ) = df (X )Y + f ∇X Y .

Check directly D is a covariant derivative on R3.
On a regular surface (Product Rule. You should check linearity in X !):

∇X (fY ) = DX (fY )− 〈DX (fY ),N〉N
= df (X )Y + fDX Y − 〈df (X )Y + fDX Y ,N〉N
= f (DX Y − 〈DX Y ,N〉N) + df (X )Y
= f ∇X Y + df (X )Y .

Paul Bryan MATH704 Differential Geometry 24 / 32



Coordinate Vector Fields and Christoffel Symbols
In local coordinates ϕ : U ⊆ S → V ⊆ R2,

X = Xu∂u + X v∂v , Y = Y u∂u + Y v∂v .

Let Z = ∇X Y . We want to work out Zu,Z v in terms of Xu,X v ,Y u,Y v .
Linearity:

∇X Y = Xu∇∂u (Y u∂u)+Xu∇∂u (Y v∂v )+X v∇∂v (Y u∂u)+X v∇∂v (Y v∂v )

Product rule:
∇∂u (Y u∂u) = (∇uY u)∂u + Y u∇u∂u

Christoffel Symbols. Write ∇u∂u in terms of ∂u, ∂v :

∇u∂u = Γu
uu∂u + Γv

uu∂v .

∇X Y = X i∇∂i (Y j∂j) = X i(∂iY j)∂j+X iY jΓk
ij∂k =

(
X i∂iY j + X iY kΓj

ik

)
∂j
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Example: Polar Coordinates
Choose local coordinates (r , θ) for the plane:

φ(r , θ) = (r cos θ, r sin θ), φ−1(x , y) = (
√

x2 + y2, arctan(y/x)).

∂r = cos θ∂x + sin θ∂y ∂x =
x√

x2 + y2
∂r −

y
x2 + y2∂θ

∂θ = −r sin θ∂x + r cos θ∂y ∂y =
y√

x2 + y2
∂r +

x
x2 + y2∂θ

D∂r∂r = Dcos θ∂x+sin θ∂y cos θ∂x + sin θ∂y

=
[
(cos θ∂x + sin θ∂y ) cos θ

]
∂x +

[
(cos θ∂x + sin θ∂y ) sin θ

]
∂y

=
[
∂r cos θ

]
∂x +

[
∂r sin θ

]
∂y = 0.

Therefore
Γr

rr = Γθrr = 0.
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Example: Polar Coordinates

D∂θ∂θ = D∂θ

[
− r sin θ∂x + r cos θ∂y

]
= −

[
∂θr sin θ

]
∂x +

[
∂θr cos θ

]
∂y

= −r cos θ∂x − r sin θ∂y

= −r∂r .

Therefore
Γr
θθ = −r Γθθθ = 0.

Exercise: Calculate

D∂r∂θ = Γr
rθ∂r + Γθrθ∂θ

D∂θ∂r = Γr
θr∂r + Γθθr∂θ
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Metric compatability

For a Riemannian manifold (M, g) with X ,Y vector fields we have

x 7→ [g(X ,Y )](x) := gx (X (x),Y (x))

is a smooth function.
In coordinates,

g(X ,Y ) = g(X i∂i ,Y j∂j) = X iY jg(∂i , ∂j) := X iY jgij .

Definition
A connection is metric compatible if

∂X [g(Y ,Z )] = g(∇X Y ,Z ) + g(Y ,∇X Z ).
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Torsion
Given two vector fields X ,Y , we have a commutator: ∇X Y −∇Y X .
It may be that this is non-zero simply because X and Y fail to
commute.
For example, with the Directional derivative on Rn,

DX Y − DY X = [X ,Y ]

since DX Y = ∂X Y i∂i is just differentiating the components.

Definition
The torsion tensor of a connection is

T (X ,Y ) = ∇X Y −∇Y X − [X ,Y ].

A connection is torsion free if T (X ,Y ) = 0 for all X ,Y .
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Fundamental Theorem of Riemannian Geometry

Theorem
Given a Riemannian manifold (M, g), there exists a unique metric
compatible, torsion free connection. This connection is referred to as the
Levi-Civita connection, or Riemannian connection.

Proof.
∇X Y is uniquely defined by the Koszul formula

2g(∇X Y ,Z ) = ∂X (g(Y ,Z )) + ∂Y (g(X ,Z ))− ∂Z (g(X ,Y ))

+ g([X ,Y ],Z )− g([Y ,Z ],X ) + g([Z ,X ],Y ).
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Fundamental Theorem of Riemannian Geometry

For fixed X ,Y , the right hand side is a linear function of Z , thus
there exists a unique vector W such that g(W ,Z ) = RHS(Z ).
Then we define ∇X Y = 1

2W .
Then one can check this satisfies the definition of a connection.
The formula is derived by assuming a metric compatible, torsion free
connection exists and showing it must satisfy the Koszul formula
which establishes uniqueness.

In coordinates

Γk
ij∂k := ∇∂i∂j =

1
2gkl (∂iglj + ∂jgil − ∂lgij) ∂k .
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