MATH704 Differential Geometry
 Macquarie University, Semester 22018

Paul Bryan

Lecture Thirteen: Curvature and Global Geometry

(1) Lecture Thirteen: Curvature and Global Geometry

- Connection on Regular Surfaces (hypersurfaces, sub-manifolds)
- Riemannian (Levi-Civita) Connection
- Second Derivatives
- Curvature Tensor
- Gauss Curvature
- Local Gauss-Bonnet
- Gauss-Bonnet Theorem (Global)

Lecture Thirteen: Curvature and Global Geometry Connection on Regular Surfaces (hypersurfaces, sub-manifolds)
(1) Lecture Thirteen: Curvature and Global Geometry

- Connection on Regular Surfaces (hypersurfaces, sub-manifolds)
- Riemannian (Levi-Civita) Connection
- Second Derivatives
- Curvature Tensor
- Gauss Curvature
- Local Gauss-Bonnet
- Gauss-Bonnet Theorem (Global)

Commuting Covariant Derivatives

Lemma

$$
\nabla_{X} Y-\nabla_{Y} X=[X, Y] .
$$

Proof.

$$
\nabla_{X} Y-\nabla_{Y} X=D_{X} Y-A(X, Y)-\left(D_{Y} X-A(Y, X)\right)=D_{X} Y-D_{Y} X
$$

by symmetry of A. So we only need to verify the lemma for D.

$$
\begin{aligned}
\left(D_{X} Y-D_{Y} X\right) f & =\left(D_{X^{i} \partial_{i}} Y^{j} \partial_{j}-D_{Y^{k}} \partial_{k} X^{\prime} \partial_{l}\right) f \\
& =X^{i} \partial_{i}\left(Y^{j}\right) \partial_{j} f+X^{i} Y^{j} \partial_{i} \partial_{j} f-Y^{k} \partial_{k}\left(X^{\prime}\right) \partial_{l} f+Y^{k} X^{\prime} \partial_{k} \partial_{l} f \\
& =\left(X^{i} \partial_{i}\left(Y^{j}\right)-Y^{i} \partial_{i}\left(X^{j}\right)\right) \partial_{j} f \\
& =[X, Y] f .
\end{aligned}
$$

Metric Compatibility

Theorem

The covariant derivative is metric compatible. That is, for all tangent vector fields X, Y, Z

$$
\partial_{X}[g(Y, Z)]=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

Proof.

First note that the Euclidean directional is metric compatible:
We write

$$
\begin{aligned}
\langle X, Y\rangle & =\sum_{i} X^{i} Y^{i}=\delta_{i j} X^{i} Y^{j}, \quad \delta_{i j}= \begin{cases}1, & i=j \\
0, & i \neq j\end{cases} \\
\partial_{X}\langle Y, Z\rangle & =D_{X}\left(\delta_{i j} Y^{i} Z^{j}\right)=\delta_{i j}\left(D_{X} Y^{i}\right) Z^{j}+\delta_{i j} Y^{i}\left(D_{X} Z^{j}\right) \\
& =\left\langle D_{X} Y, Z\right\rangle+\left\langle Y, D_{X} Z\right\rangle .
\end{aligned}
$$

Metric Compatibility

Proof.

Now the covariant derivative

$$
\begin{aligned}
\partial_{x} g(Y, Z) & =\partial_{X}\langle Y, Z\rangle=\left\langle D_{X} Y, Z\right\rangle+\left\langle Y, D_{X} Z\right\rangle \\
& =\left\langle D_{X} Y-\left\langle D_{X} Y, N\right\rangle N, Z\right\rangle+\left\langle Y, D_{X} Z-\left\langle D_{X} Z, N\right\rangle N\right\rangle \\
& =\left\langle\nabla_{x} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle \\
& =g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
\end{aligned}
$$

Lecture Thirteen: Curvature and Global Geometry Riemannian (Levi-Civita) Connection

(1) Lecture Thirteen: Curvature and Global Geometry

- Connection on Regular Surfaces (hypersurfaces, sub-manifolds)
- Riemannian (Levi-Civita) Connection
- Second Derivatives
- Curvature Tensor
- Gauss Curvature
- Local Gauss-Bonnet
- Gauss-Bonnet Theorem (Global)

Metric compatability

For a Riemannian manifold (M, g) with X, Y vector fields we have

$$
x \mapsto[g(X, Y)](x):=g_{x}(X(x), Y(x))
$$

is a smooth function.
In coordinates,

$$
g(X, Y)=g\left(X^{i} \partial_{i}, Y^{j} \partial_{j}\right)=X^{i} Y^{j} g\left(\partial_{i}, \partial_{j}\right):=X^{i} Y^{j} g_{i j}
$$

Definition

A connection is metric compatible if

$$
\partial_{X}[g(Y, Z)]=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

Torsion

- Given two vector fields X, Y, we have a commutator: $\nabla_{X} Y-\nabla_{Y} X$.
- It may be that this is non-zero simply because X and Y fail to commute.
- For example, with the Directional derivative on \mathbb{R}^{n},

$$
D_{X} Y-D_{Y} X=[X, Y]
$$

since $D_{X} Y=\partial_{X} Y^{i} \partial_{i}$ is just differentiating the components.

Definition

The torsion tensor of a connection is

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

A connection is torsion free if $T(X, Y)=0$ for all X, Y.

Fundamental Theorem of Riemannian Geometry

Theorem

Given a Riemannian manifold (M, g), there exists a unique metric compatible, torsion free connection. This connection is referred to as the Levi-Civita connection, or Riemannian connection.

Proof.

$\nabla_{X} Y$ is uniquely defined by the Koszul formula

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & \partial_{X}(g(Y, Z))+\partial_{Y}(g(X, Z))-\partial_{Z}(g(X, Y)) \\
& +g([X, Y], Z)-g([Y, Z], X)+g([Z, X], Y) .
\end{aligned}
$$

Fundamental Theorem of Riemannian Geometry

- For fixed X, Y, the right hand side is a linear function of Z, thus there exists a unique vector W such that $g(W, Z)=R H S(Z)$.
- Then we define $\nabla_{X} Y=\frac{1}{2} W$.
- Then one can check this satisfies the definition of a connection.
- The formula is derived by assuming a metric compatible, torsion free connection exists and showing it must satisfy the Koszul formula which establishes uniqueness.

In coordinates

$$
\Gamma_{i j}^{k} \partial_{k}:=\nabla_{\partial i} \partial_{j}=\frac{1}{2} g^{k l}\left(\partial_{i} g_{l j}+\partial_{j} g_{i l}-\partial_{l} g_{i j}\right) \partial_{k}
$$

Lecture Thirteen: Curvature and Global Geometry - Second Derivatives
(1) Lecture Thirteen: Curvature and Global Geometry

- Connection on Regular Surfaces (hypersurfaces, sub-manifolds)
- Riemannian (Levi-Civita) Connection
- Second Derivatives
- Curvature Tensor
- Gauss Curvature
- Local Gauss-Bonnet
- Gauss-Bonnet Theorem (Global)

Differentiating Linear Maps

- Consider a linear map $T: T S \rightarrow T S$. For example

$$
\mathcal{W}=-d N, \quad \text { or } \quad \nabla X
$$

- For a vector field $X, T(X)$ is a vector field.
- We can differentiate the vector field $T(X)$ to get $\nabla(T(X))$.
- Thus for another vector field Y, we have

$$
[\nabla(T(X))](Y)=\nabla_{Y}(T(X))
$$

- We want to isolate the change in T but X may also be changing and we don't want to include the change of X.
- Thus we define a new linear map, $\nabla_{Y} T$:

$$
\left(\nabla_{Y} T\right)(X)=\nabla_{Y}(T(X))-T\left(\nabla_{Y} X\right)
$$

Differentiating Linear Maps

Example

On \mathbb{R}^{2}, let

$$
M(x)=\left(\begin{array}{cc}
x y & \cos (x) \\
0 & x^{2}-y
\end{array}\right)
$$

Then

$$
D_{\partial_{x}} M=\left(\begin{array}{cc}
y & -\sin (x) \\
0 & 2 x
\end{array}\right)
$$

Observe that

$$
\begin{gathered}
D_{\partial_{x}}\left[M(x)\left(\partial_{x}\right)\right]=\partial_{x}\left[\left(\begin{array}{cc}
x y & \cos (x) \\
0 & x^{2}-y
\end{array}\right)\binom{1}{0}\right]=\partial_{x}\binom{x y}{0}=\binom{y}{0} \\
D_{\partial_{x}}\left[M(x)\left(\partial_{x}\right)\right]=\left[D_{\partial_{x}} M(x)\right]\left(\partial_{x}\right)+M(x)\left(D_{\partial_{x}} \partial_{x}\right)=\left[D_{\partial_{x}} M(x)\right]\left(\partial_{x}\right) .
\end{gathered}
$$

Differentiating Linear Maps

Example

Take the same M and let $X(x, y)=x \partial_{x}$.

$$
\begin{gathered}
D_{\partial_{x}} X=\partial_{x} \\
D_{\partial_{x}}[M(x)(X)]=\partial_{x}\left[\left(\begin{array}{cc}
x y & \cos (x) \\
0 & x^{2}-y
\end{array}\right)\binom{x}{0}\right]=\partial_{x}\binom{x^{2} y}{0}=\binom{2 x y}{0} \\
D_{\partial_{x}} M=\left(\begin{array}{cc}
y & -\sin (x) \\
0 & 2 x
\end{array}\right) \\
{\left[D_{\partial_{x}} M(x)\right](X)=x y \partial_{x}} \\
M(x)\left(D_{\partial_{x}} X\right)=x y \partial_{x}
\end{gathered}
$$

Second Covariant Derivative

Definition

Let X be a vector field. The second covariant derivative of X is defined to be the covariant derivative of $T=\nabla X$

$$
\left(\nabla_{Y}(\nabla X)\right)(Z)=\nabla_{Y}(\nabla X(Z))-\nabla X\left(\nabla_{Y} Z\right)=\nabla_{Y}\left(\nabla_{Z} X\right)-\nabla_{\nabla_{Y} Z} X .
$$

We also write

$$
\nabla^{2} X(Y, Z)=\left(\nabla_{Y}(\nabla X)\right)(Z)
$$

or

$$
\nabla_{Y, Z}^{2} X=\left(\nabla_{Y}(\nabla X)\right)(Z)
$$

Lecture Thirteen: Curvature and Global Geometry Curvature Tensor
(1) Lecture Thirteen: Curvature and Global Geometry

- Connection on Regular Surfaces (hypersurfaces, sub-manifolds)
- Riemannian (Levi-Civita) Connection
- Second Derivatives
- Curvature Tensor
- Gauss Curvature
- Local Gauss-Bonnet
- Gauss-Bonnet Theorem (Global)

The Curvature Tensor

Definition

The curvature tensor is the commutator of second derivatives,

$$
\begin{aligned}
\operatorname{Rm}(X, Y) Z & =\nabla^{2} Z(X, Y)-\nabla^{2} Z(Y, X) \\
& =\nabla_{X}\left(\nabla_{Y} Z\right)-\nabla_{Y}\left(\nabla_{X} Z\right)-\nabla_{\nabla_{X} Y-\nabla_{Y} X} Z .
\end{aligned}
$$

We can write Rm as a commutator

$$
\operatorname{Rm}(X, Y)=\nabla_{X, Y}^{2}-\nabla_{Y, X}^{2}
$$

- We may writeRm $(X, Y) Z=\nabla_{Y}\left(\nabla_{X} Z\right)-\nabla_{X}\left(\nabla_{Y} Z\right)-\nabla_{[X, Y]} Z$.
- The $[X, Y]$ term compensates for the fact that $\nabla_{X, Y}^{2}$ and $\nabla_{Y, X}^{2}$ might not commute simply because X and Y might not commute.

Symmetries of the Curvature Tensor

Theorem

For any vectors X, Y, Z, W,
(1) $\operatorname{Rm}(X, Y) Z=-\operatorname{Rm}(Y, X) Z$,
© $g(\operatorname{Rm}(X, Y) Z, W)=-g(\operatorname{Rm}(X, Y) W, Z)$,

- $\operatorname{Rm}(X, Y) Z+\operatorname{Rm}(Y, Z) X+\operatorname{Rm}(Z, X) Y=0$ (Bianchi Identity),

Proof.

(1) Anti-symmetry in the first two slots:

$$
\begin{aligned}
\operatorname{Rm}(X, Y) Z & =\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \\
& =-\nabla_{Y} \nabla_{Y} Z+\nabla_{Y} \nabla_{X} Z-\nabla_{-[Y, X]} Z \\
& =-\operatorname{Rm}(Y, X) Z .
\end{aligned}
$$

Symmetries of the Curvature Tensor

Proof.

(2) Anti-symmetry in the last two slots. This is a little more involved: We use metric compatability.

$$
\begin{aligned}
g\left(\nabla_{X} \nabla_{Y} Z, W\right)= & \nabla_{X} g\left(\nabla_{Y} Z, W\right)-g\left(\nabla_{Y} Z, \nabla_{X} W\right) \\
= & \nabla_{X} \nabla_{Y} g(Z, W)-\nabla_{X} g\left(Z, \nabla_{Y} W\right) \\
& -\nabla_{Y} g\left(Z, \nabla_{X} W\right)+g\left(Z, \nabla_{Y} \nabla_{X} W\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
g\left(\nabla_{Y} \nabla_{X} Z, W\right)= & \nabla_{Y} g\left(\nabla_{X} Z, W\right)-g\left(\nabla_{X} Z, \nabla_{Y} W\right) \\
= & \nabla_{Y} \nabla_{X} g(Z, W)-\nabla_{Y} g\left(Z, \nabla_{X} W\right) \\
& -\nabla_{X} g\left(Z, \nabla_{Y} W\right)+g\left(Z, \nabla_{X} \nabla_{Y} W\right) .
\end{aligned}
$$

Symmetries of the Curvature Tensor

Proof.

(2) Thus,

$$
\begin{aligned}
g\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X}, W\right)= & \left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}\right) g(Z, W) \\
& -g\left(Z, \nabla_{X} \nabla_{Y} W-\nabla_{Y} \nabla_{X} W\right)
\end{aligned}
$$

Subtracting,

$$
g\left(\nabla_{[X, Y]} Z, W\right)=\nabla_{[X, Y]} g(Z, W)-g\left(Z, \nabla_{[X, Y]} W\right)
$$

we obtain,

$$
\begin{aligned}
g(\operatorname{Rm}(X, Y) Z, W)= & g\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, W\right) \\
= & \left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) g(Z, W) \\
& -g\left(Z, \nabla_{X} \nabla_{Y} W-\nabla_{Y} \nabla_{X} W-\nabla_{[X, Y]} W\right) \\
= & \operatorname{Rm}(X, Y)[g(Z, W)]-g(\operatorname{Rm}(X, Y) W, Z) .
\end{aligned}
$$

Symmetries of the Curvature Tensor

Proof.

(2) So far we have

$$
g(\operatorname{Rm}(X, Y) Z, W)=R(X, Y)[g(Z, W)]-g(\operatorname{Rm}(X, Y) W, Z)
$$

where for the smooth function $f=g(Z, W)$ we have

$$
\begin{aligned}
\operatorname{Rm}(X, Y) f & =\nabla_{X} \nabla_{Y} f-\nabla_{Y} \nabla_{X} f-\nabla_{[X, Y]} f \\
& =X(Y(f))-Y(X(f))-[X, Y](f) \\
& =[X, Y](f)-[X, Y](f)=0 .
\end{aligned}
$$

Thus we have

$$
g(\operatorname{Rm}(X, Y) Z, W)=-g(\operatorname{Rm}(X, Y) W, Z)
$$

Symmetries of the Curvature Tensor

Proof.

B

$$
\begin{aligned}
& \operatorname{Rm}(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \\
& \operatorname{Rm}(Y, Z) X=\nabla_{Y} \nabla_{Z} X-\nabla_{Z} \nabla_{Y} X-\nabla_{[Y, Z]} X \\
& \operatorname{Rm}(Z, X) Y=\nabla_{Z} \nabla_{X} Y-\nabla_{X} \nabla_{Z} Y-\nabla_{[Z, X]} Y
\end{aligned}
$$

Then we use the symmetry $\nabla_{Y} Z-\nabla_{Z} Y=[Y, Z]$:

$$
\nabla_{X}\left(\nabla_{Y} Z\right)=\nabla_{X}\left(\nabla_{Z} Y+[Y, Z]\right)=\nabla_{X} \nabla_{Z} Y+\nabla_{X}[Y, Z]
$$

Notice that the second term in the last of the three lines above contains a term $-\nabla_{X} \nabla_{Z} Y$ which cancels with the $\nabla_{X} \nabla_{Z} Y$ term here.

Symmetries of the Curvature Tensor

Proof.

(3) Using the same cancelling for the other terms results in

$$
\begin{aligned}
\operatorname{Rm}(X, Y) Z+ & \operatorname{Rm}(Y, Z) X+\operatorname{Rm}(Z, X) Y \\
= & \nabla_{X}[Y, Z]+\nabla_{Y}[Z, X]+\nabla_{Z}[X, Y] \\
& -\nabla_{[Y, Z]} X-\nabla_{[Z, X]} Y-\nabla_{[X, Y]} Z \\
= & {[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]] . }
\end{aligned}
$$

again by using symmetry to get the last line.

Symmetries of the Curvature Tensor

Proof.

(3) To proof is completed by showing the Jacobi Identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 .
$$

This is little tedious but is easily computed directly

$$
\begin{aligned}
{[X,[Y, Z]](f) } & =X([Y, Z] f)-[Y, Z](X f) \\
& =X Y Z f-X Z Y f-Y Z X f+Z Y X f \\
{[Y,[Z, X]](f) } & =Y Z X f-Y X Z f-Z X Y f+X Z Y f \\
{[Z,[X, Y]](f) } & =Z X Y f-Z Y X f-X Y Z f+Y X Z f .
\end{aligned}
$$

Summing the three lines everything cancels.

Multi-linearity of the Curvature Tensor

- The curvature tensor is a multi-linear map. That is, for each fixed Y, Z, W, the map $X \mapsto g(\operatorname{Rm}(X, Y) Z, W)$ is linear. The same goes for the other three slots.
- Thus for example, writing $X=X^{u} \partial_{u}+X^{v} \partial_{v}$,

$$
\begin{aligned}
& g\left(\operatorname{Rm}\left(X^{u} \partial_{u}+X^{v} \partial_{v}, Y\right) Z, W\right) \\
& \quad=X^{u} g\left(\operatorname{Rm}\left(\partial_{u}, Y\right) Z, W\right)+X^{v} g\left(\operatorname{Rm}\left(\partial_{v}, Y\right) Z, W\right)
\end{aligned}
$$

- Note: The last two terms in the map
$X \mapsto \nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$ are not linear because of the Leibniz rule. But the extra terms all cancel:

$$
\nabla_{f X} \nabla_{Y} Z=f \nabla_{X} \nabla_{Y} Z
$$

$$
\begin{aligned}
\nabla_{Y} \nabla_{f X} Z-\nabla_{[Y, f X]} Z= & f \nabla_{Y} \nabla_{X} Z+Y(f) \nabla_{X} Z \\
& -f \nabla_{[Y, X]} Z-Y(f) \nabla_{X} Z \\
= & f\left(\nabla_{Y} \nabla_{X} Z-\nabla_{[Y, X]} Z\right)
\end{aligned}
$$

Lecture Thirteen: Curvature and Global Geometry - Gauss Curvature
(1) Lecture Thirteen: Curvature and Global Geometry

- Connection on Regular Surfaces (hypersurfaces, sub-manifolds)
- Riemannian (Levi-Civita) Connection
- Second Derivatives
- Curvature Tensor
- Gauss Curvature
- Local Gauss-Bonnet
- Gauss-Bonnet Theorem (Global)

Curvature Tensor of a Surface

- Multi-linearity means we only need to compute the curvature tensor on basis elements (summation convention!):

$$
g\left(\operatorname{Rm}\left(X^{i} \partial_{i}, Y^{j} \partial_{j}\right), Z^{k} \partial_{k}, W^{\prime} \partial_{l}\right)=X^{i} Y^{j} Z^{k} W^{\prime} g\left(\operatorname{Rm}\left(\partial_{i}, \partial_{j}\right) \partial_{k}, \partial_{l}\right)
$$

- In two dimensions, we only have $\partial_{u}, \partial_{v}$.
- Then

$$
\operatorname{Rm}\left(\partial_{u}, \partial_{u}\right) \partial_{v}=-\operatorname{Rm}\left(\partial_{u}, \partial_{u}\right) \partial_{v}
$$

hence

$$
\operatorname{Rm}\left(\partial_{u}, \partial_{u}\right) \partial_{v}=0
$$

- Applying the other symmetries, we find the only non-zero component is

$$
g\left(\operatorname{Rm}\left(\partial_{u}, \partial_{v}\right) \partial_{u}, \partial_{v}\right)
$$

Curvature Tensor of a Surface

- All other terms can be obtained from the single term. For example,

$$
g\left(\operatorname{Rm}\left(\partial_{u}, \partial_{v}\right) \partial_{u}, \partial_{v}\right)=-g\left(\operatorname{Rm}\left(\partial_{v}, \partial_{u}\right) \partial_{u}, \partial_{v}\right)
$$

etc.

- Thus we may write

$$
g\left(\operatorname{Rm}\left(\partial_{u}, \partial_{v}\right) \partial_{u}, \partial_{v}\right)=F\left(\partial_{u}, \partial_{v}\right)
$$

for some scalar valued function.

The Gauss Equation

We can express the curvature tensor in terms of the second fundamental form (i.e. the curvature we already know about).

Lemma

$$
g(\operatorname{Rm}(X, Y) X, Y)=-\left(A(X, X) A(Y, Y)-A(X, Y)^{2}\right)=-\operatorname{det} A(X, Y) .
$$

Proof.

Recall that we have

$$
\nabla_{X} V=D_{X} V-\left\langle D_{X} V, N\right\rangle N
$$

Applying this formula to $V=\nabla_{Y} Z$, we get

$$
\begin{aligned}
g\left(\nabla_{X} \nabla_{Y} Z, W\right) & =\left\langle\nabla_{X} \nabla_{Y} Z, W\right\rangle \\
& =\left\langle D_{X} \nabla_{Y} Z-\left\langle D_{X} \nabla_{Y} Z, N\right\rangle N, W\right\rangle \\
& =\left\langle D_{X} \nabla_{Y} Z, W\right\rangle .
\end{aligned}
$$

The Gauss Equation

Proof.

From the previous slide:

$$
g\left(\nabla_{X} \nabla_{Y} Z, W\right)=\left\langle D_{X} \nabla_{Y} Z, W\right\rangle
$$

Computing $D_{X} \nabla_{Y} Z$ gives

$$
\begin{aligned}
D_{X} \nabla_{Y} Z & =D_{X}\left(D_{Y} Z-\left\langle D_{Y} Z, N\right\rangle N\right) \\
& =D_{X} D_{Y} Z-\left\langle D_{X} D_{Y} Z, N\right\rangle N-\left\langle D_{Y} Z, D_{X} N\right\rangle N-\left\langle D_{Y} Z, N\right\rangle D_{X} N .
\end{aligned}
$$

Since we are taking the inner product with W, we may ignore the middle two (normal) terms.

$$
\begin{aligned}
g\left(\nabla_{X} \nabla_{Y} Z, W\right) & =\left\langle D_{X} D_{Y} Z-\left\langle D_{Y} Z, N\right\rangle D_{X} N, W\right\rangle \\
& =\left\langle D_{X} D_{Y} Z, W\right\rangle-A(Y, Z) A(X, W) .
\end{aligned}
$$

The Gauss Equation

Proof.

A similar formula holds for $g\left(\nabla_{Y} \nabla_{X} Z, W\right)$ so that

$$
\begin{aligned}
g(\operatorname{Rm}(X, Y) Z, W)= & g\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, W\right) \\
= & \left\langle D_{X} D_{Y} Z, W\right\rangle-A(Y, Z) A(X, W) \\
& -\left\langle D_{Y} D_{X} Z, W\right\rangle+A(X, Z) A(Y, W) \\
& -\left\langle D_{[X, Y]} Z, W\right\rangle \\
= & \left\langle\operatorname{Rm}_{D}(X, Y) Z, W\right\rangle \\
& +A(X, Z) A(Y, W)-A(Y, Z) A(X, W) .
\end{aligned}
$$

But $\mathrm{Rm}_{D} \equiv 0$ (Euclidean space has zero curvature!) since

$$
D_{\partial_{i}} D_{\partial_{j}} \partial_{k}=0 .
$$

Covariant Derivative and Curvature are Intrinsic

- We won't prove the theorem here (though it's not difficult).
- The theorem says that we may write $\nabla=\nabla(g)$. That is ∇ may be obtained in a unique way from g.
- Thus we obtain:

$$
\begin{aligned}
& \text { Corollary } \\
& \text { If }\left(S_{1}, g_{1}\right) \text { and }\left(S_{2}, g_{2}\right) \text { are isometric, then } \nabla_{1}=\nabla_{2} \text {. }
\end{aligned}
$$

Gauss' Theorema Egregium (Remarkable Theorem)

Theorem

The Gauss curvature is intrinsic. That is, if $\left(S_{1}, g_{1}\right)$ and $\left(S_{2}, g_{2}\right)$ are locally isometric, then $K_{1}=K_{2}$.

Proof.

For any X, Y linearly independent,

$$
K=\frac{\operatorname{det} A(X, Y)}{\operatorname{det} g(X, Y)}=-\frac{g(\operatorname{Rm}(X, Y) X, Y)}{\operatorname{det} g(X, Y)}
$$

That's it! The curvature tensor is intrinsic $\operatorname{Rm}=\operatorname{Rm}(\nabla)=\operatorname{Rm}(\nabla(g))$.

Non-isometric Surfaces

Example

The surfaces

- Sphere: $K \equiv 1$
- Torus: K non-constant but changing sign
- Cylinder: $K \equiv 0$
- Paraboloid: K non-constant and positive are not locally isometric.
- Besides the cylinder, none of these surfaces can be flattened out (even locally!) without distorting the geometry - stretching, crumpling etc.
- In particular, all surfaces are locally diffeomorphic to the plane (via the local parametrisations) so they share the Calculus with the plane.
- But typically, they do not share the Geometry with the plane.

Even though plane calculus may be brought to bear on the study of surface geometry, the geometry itself is not plane geometry.

Corrugation

Example

- Folding a sheet of (paper, metal, cardboard) along a line introduces curvature but does not change the geometry provided no stretching occurs.
- Thus one principal curvature is non-zero, but Gauss' theorem forces the other to vanish since 0

$$
\text { Gauss } \overline{\overline{T h}}=
$$

- Introduces rigidity in one direction and flexibility in the other.

Map Making

Example

- No map exists preserving length, angle and area!
- Archimedes Cylinder to Sphere map preserves area:

$$
(x, y, z) \in C \mapsto\left(\sqrt{1-z^{2}} x, \sqrt{1-z^{2}} y, z\right)
$$

- The Mercator projection preserves angles. Good for navigation!

Pictures

Helicoid and Catenoid

Example

- Helicoid: $(v \cos (u), v \sin (u), u)$,
- Catenoid: $(\sinh (v) \cos (u), \sinh (v) \sin (u), u)$.

The Helicoid and Catenoid are locally isometric with Gauss curvature

$$
K=-\frac{1}{\left(1+u^{2}\right)^{2}}
$$

Pictures

The Converse of Gauss' Theorem is false

Example

Here is an example of surfaces S_{1}, S_{2} for which $K_{1}=K_{2}$ but $g_{1} \neq g_{2}$.

- $\varphi(u, v)=(u \cos (v), u \sin (v), \ln (u))$
- $\psi(u, v)=(u \cos (v), u \sin (v), v)$

Exercise:

- Check that $K_{\varphi}(u, v)=K_{\psi}(u, v)$
- Check that $g_{\varphi}(u, v) \neq g_{\psi}(u, v)$.
- Thus we have surfaces with the equal Gauss curvature that are not isometric.
- Gauss Theorem: $g_{1}=g_{2} \Rightarrow K_{1}=K_{2}$.
- Converse is false: $K_{1}=K_{2} \nRightarrow g_{1}=g_{2}$.

Lecture Thirteen: Curvature and Global Geometry - Local Gauss-Bonnet
(1) Lecture Thirteen: Curvature and Global Geometry

- Connection on Regular Surfaces (hypersurfaces, sub-manifolds)
- Riemannian (Levi-Civita) Connection
- Second Derivatives
- Curvature Tensor
- Gauss Curvature
- Local Gauss-Bonnet
- Gauss-Bonnet Theorem (Global)

Euclid's Axioms for Geometry:

The development of Riemannian geometry began with investigations into whether non-Euclidean geometries exist. Euclidean axioms:
(1) Through any two points lies a line,
(2) Any (finite) line may be extended indefinitely and uniquely a a straight line
(3) Through any point and given any positive number, there exists a circle centred on the point with radius the given number
((Through any point on a line, there is a unique perpendicular line.

Euclid's First Four Axioms

Parallel Postulate

The first four axioms (or postulates) are relatively self evident and non-controversial.
Of a rather different nature is the famous fifth postulate:
(5) Given any line and point not on the line, there exists a unique line through the point not intersecting the original line.

Parallel Postulate and Triangles

The fifth postulate is equivalent to:

- Sum of the interior angles of a triangle: $\theta_{1}+\theta_{2}+\theta_{3}=\pi$.

Triangles in non-Euclidean Geometry

- Sphere $K>0: \theta_{1}+\theta_{2}+\theta_{3}>\pi$
- Euclidean Space $K=0: \theta_{1}+\theta_{2}+\theta_{3}=\pi$
- Pseudosphere $K<0: \theta_{1}+\theta_{2}+\theta_{3}<\pi$

Constant Curvature Geometries

Piecewise Regular Curves

Definition

A piecewise regular curve $\gamma:[a, b] \rightarrow S$ is a continuous curve such that there exists a partition

$$
a=t_{0}<t_{1}<\cdots<t_{k-1}<t_{k}=b
$$

with γ is regular on [t_{i}, t_{i+1}]. The points $\gamma\left(t_{i}\right)$ are called the vertices.
Regular means differentiable and $\gamma^{\prime} \neq 0$ with left and right continuous limits: $\lim _{t \rightarrow+t_{i}} \gamma^{\prime}(t)$ and $\lim _{t \rightarrow-t_{i}} \gamma^{\prime}(t)$ are defined and non-zero.
We write

$$
\gamma_{-}^{\prime}\left(t_{i}\right)=\lim _{t \rightarrow-t_{i}} \gamma^{\prime}(t), \quad \gamma_{+}^{\prime}\left(t_{i}\right)=\lim _{t \rightarrow+t_{i}} \gamma^{\prime}(t)
$$

Simple Closed Curves

Definition

A closed curve is a continuous curve $\gamma:[a, b] \rightarrow S$ with $\gamma(a)=\gamma(b)$. A simple curve is a curve with no self intersections: $\gamma(t)=\gamma(r) \Rightarrow t=r$.

We consider piecewise regular, simple, closed curves.

Turning Tangents and Total Curvature of Plane Curves

Our first Global result for curves. Generalising this result will lead us to the Gauss-Bonnet theorem.
Theorem (Turning Tangents)
Let $\gamma:[0, L] \rightarrow \mathbb{R}^{2}$ closed plane curve parametrised by arc-length. Then

$$
I:=\frac{1}{2 \pi} \int_{0}^{L} \kappa(s) d s \in \mathbb{Z} \text {. }
$$

The integer, I is called the winding number. In particular, if γ is a simple, closed curve then

$$
\int_{0}^{L} \kappa(s) d s= \pm 2 \pi .
$$

The sign \pm is just the orientation.

Turning Tangents and Total Curvature of Plane Curves

Proof.

- The function

$$
\theta(s)=\int_{0}^{s} \kappa(\tilde{s}) d \tilde{s}
$$

satisfies

$$
\partial_{s} \theta=\kappa .
$$

- Since $\partial_{s} \theta=\kappa$ we have

$$
\theta(L)-\theta(0)=\int_{0}^{L} \kappa(s) d s .
$$

Turning Tangents and Total Curvature of Plane Curves

Proof.

- On the other hand, since $T(s)=\gamma^{\prime}(s)$ is unit length,

$$
T(s)=(\cos (\varphi(s)), \sin (\varphi(s)))
$$

for a differentiable (by the implicit function theorem) function
$\varphi:[0, L] \rightarrow \mathbb{R}$.

- But $T(L)=T(0)$ and hence

$$
\varphi(L)=\varphi(0)+2 \pi I
$$

for an integer l.

- We also have

$$
\kappa=\left\langle\partial_{s} T, N\right\rangle=\left\langle\partial_{s} \varphi(-\sin \varphi, \cos \varphi),(-\sin \varphi, \cos \varphi)\right\rangle=\partial_{s} \varphi
$$

Turning Tangents and Total Curvature of Plane Curves

Proof.

- We have

$$
\partial_{s} \varphi=\partial_{s} \theta \Rightarrow \varphi(s)=\theta(s)+C
$$

for some constant C.

- Therefore,

$$
\varphi(L)-\varphi(0)=(\theta(L)+C)-(\theta(0)+C)=\theta(L)-\theta(0)
$$

- Putting it all together, we have

$$
2 \pi I=\varphi(L)-\varphi(0)=\theta(L)-\theta(0)=\int_{0}^{L} \kappa d s .
$$

- Note θ is just the angle of T with a fixed vector (such as the x-axis).

Angle in General

Define the angle θ_{i} between $\gamma_{-}^{\prime}\left(t_{i}\right)$ and $\gamma_{+}^{\prime}\left(t_{1}\right)$ as follows:
(1)

$$
|\theta|=\left|\arccos g\left(T_{i}^{-}, T_{i}^{+}\right)\right| \in(0, \pi)
$$

where $T=\gamma^{\prime} /\left|\gamma^{\prime}\right|$ is the unit tangent.
(2) We take $\theta \in(-\pi, \pi)$ by choosing the sign so that $\theta>0$ whenever

$$
\left\{T_{i}^{-}, T_{i}^{+}\right\}
$$

is positively oriented and $\theta<0$ otherwise.
(3) The case of a cusp is when $\theta=\pi$ in which case it's possibly to choose the sign so that θ varies continuously.

Gauss-Bonnet Theorem (Local)

Theorem

Let $D \subseteq S$ be homeomorphic to a disc with boundary a piecewise regular, simple, closed curve, γ. Then

$$
\int_{D} K d A+\int_{\gamma} \kappa d s=2 \pi-\sum_{i=1}^{k} \theta_{i}
$$

- Since γ is only piecewise regular, the curvature is not defined at the vertices t_{i} so we make the definition,

$$
\int_{\gamma} \kappa d s=\sum_{i=1}^{k} \int_{t_{i-1}}^{t_{i}} \kappa d s
$$

Proof in the Plane

- In the plane $K \equiv 0$ so Gauss-Bonnet becomes

$$
\int_{\gamma} \kappa d s=2 \pi-\sum_{i=1}^{k} \theta_{i}
$$

- For γ regular (no vertices) Turning Tangents gives

$$
\int_{\gamma} \kappa d s=2 \pi
$$

- For piecewise regular, break up the integral at the vertices:

$$
\begin{aligned}
\int_{\gamma} \kappa d s & =\sum \int_{t_{i-1}}^{t_{i}} \kappa d s=\sum \int_{t_{i-1}}^{t_{i}} \partial_{s} \theta d s=\sum \theta^{-}\left(t_{i}\right)-\theta^{+}\left(t_{i-1}\right) \\
& =\theta\left(t_{k}\right)^{-}-\theta\left(t_{0}\right)^{+}+\sum \theta^{-}\left(t_{i}\right)-\theta^{+}\left(t_{i}\right) \\
& =2 \pi-\sum \theta_{i}
\end{aligned}
$$

Proof of Gauss-Bonnet

Proof.

[sketch in the case D is contained in a local parametrisation]

- On a surface, we may change coordinates so that

$$
g=\left(\begin{array}{cc}
g_{u u} & 0 \\
0 & g_{v v}
\end{array}\right) .
$$

- The geodesic curvature of $\gamma(s)=(u(s), v(s))$ may be expressed as

$$
\kappa=\frac{1}{2 \sqrt{g_{u u} g_{v v}}}\left(\partial_{v} g_{v v} \partial_{s} v-\partial_{u} g_{u u} \partial_{s} u\right)+\partial_{s} \theta
$$

Note: In the plane, $g_{u u}=g_{v v}=1$ and so the first term vanishes recovering the plane case.

Proof of Gauss-Bonnet

Proof.

- Integrating the geodesic curvature,

$$
\begin{aligned}
\int_{t_{i-1}}^{t_{i}} \kappa d s= & \int_{t_{i-1}}^{t_{i}} \frac{1}{2 \sqrt{g_{u u} g_{v v}}}\left(\partial_{v} g_{v v} \partial_{s} v-\partial_{u} g_{u u} \partial_{s} u\right) d s+\int_{t_{i-1}}^{t_{i}} \partial_{s} \theta d s \\
= & \int_{t_{i-1}}^{t_{i}}\left(\frac{1}{2 \sqrt{g_{u u} g_{v v}}} \partial_{v} g_{v v}\right) \partial_{s} v-\left(\frac{1}{2 \sqrt{g_{u u} g_{v v}}} \partial_{u} g_{u u}\right) \partial_{s} u d s \\
& +\theta\left(t_{i}\right)-\theta\left(t_{i-1}\right)
\end{aligned}
$$

Proof of Gauss-Bonnet

Proof.

Apply the Gauss-Green Theorem:

$$
\int_{\gamma} P \partial_{u} s+Q \partial_{v} s d s=\int_{D} \partial_{u} Q-\partial_{v} P d A
$$

to

$$
\begin{aligned}
\int_{\gamma} \kappa d s= & \sum \int_{t_{i-1}}^{t_{i}} \kappa d s \\
= & \int_{t_{i-1}}^{t_{i}}\left(\frac{1}{2 \sqrt{g_{u u} g_{v v}}} \partial_{v} g_{v v}\right) \partial_{s} v-\left(\frac{1}{2 \sqrt{g_{u u} g_{v v}}} \partial_{u} g_{u u}\right) \partial_{s} u d s \\
& +\sum \theta\left(t_{i}\right)-\theta\left(t_{i-1}\right)
\end{aligned}
$$

Proof of Gauss-Bonnet

Proof.

By Gauss-Green with

$$
P=-\frac{1}{2 \sqrt{g_{u u} g_{v v}}} \partial_{u} g_{u u}, \quad Q=\frac{1}{2 \sqrt{g_{u u} g_{v v}}} \partial_{v} g_{v v}
$$

we get

$$
\begin{aligned}
\int_{\gamma} \kappa d s= & \int_{D} \partial_{u}\left(\frac{1}{2 \sqrt{g_{u u} g_{v v}}} \partial_{v} g_{v v}\right)+\partial_{v}\left(\frac{1}{2 \sqrt{g_{u u} g_{v v}}} \partial_{u} g_{u u}\right) d A \\
& +\sum \theta\left(t_{i}\right)-\theta\left(t_{i-1}\right)
\end{aligned}
$$

Proof of Gauss-Bonnet

Proof.

In our coordinate system with ($g_{u v}=g_{v u}=0$) the integrand just so happens to be the Gauss curvature:

$$
K=\partial_{u}\left(\frac{1}{2 \sqrt{g_{u u} g_{v v}}} \partial_{v} g_{v v}\right)+\partial_{v}\left(\frac{1}{2 \sqrt{g_{u u} g_{v v}}} \partial_{u} g_{u u}\right)
$$

Thus

$$
\int_{\gamma} \kappa d s=\int_{D} K+\sum \theta\left(t_{i}\right)-\theta\left(t_{i-1}\right)=\int_{D} K+2 \pi-\sum \theta_{i}
$$

as required.

Remarks

- The desired coordinate system $\left(g_{u v}=0\right)$ is called orthogonal and exists on surfaces locally
- We used a form of the Turning Tangents theorem without proof.
- The formula for κ can be obtained by a similar manner to the plane case $\partial_{s} \theta=\kappa$ but taking into account the changing metric.
- The formula for K can be obtained from expressing Rm in terms of g and using the Gauss equation.
- The entire proof may be re-written (in a coordinate free way) using the language of differential forms where the Gauss-Green theorem appears as Stokes' theorem for differential forms.

Triangles Again

Definition

A geodesic triangle is a piecewise regular, simple closed curve with precisely three vertices that is the boundary of a region D homeomorphic to a disc and such that each regular arc is a geodesic.

Let $\varphi_{i}=\pi-\theta_{i} \in(0,2 \pi)$ be the interior angles. Then
$2 \pi-\left(\theta_{1}+\theta_{2}+\theta_{3}\right)=2 \pi-\left(\pi-\varphi_{1}+\pi-\varphi_{2}+\pi-\varphi_{3}\right)=\varphi_{1}+\varphi_{2}+\varphi_{3}-\pi$.

By Gauss-Bonnet

$$
\int_{D} K d A=2 \pi-\left(\theta_{1}+\theta_{2}+\theta_{3}\right)=\varphi_{1}+\varphi_{2}+\varphi_{3}-\pi
$$

Triangles in Constant Curvature

Example

- Sphere $K \equiv 1: 0<\operatorname{Area}(D)=\int_{D} K d A=\varphi_{1}+\varphi_{2}+\varphi_{3}-\pi$.
- Plane $K \equiv 0: 0=\int_{D} K d A=\varphi_{1}+\varphi_{2}+\varphi_{3}-\pi$.
- Pseudosphere $K \equiv-1$:

$$
0>-\operatorname{Area}(D)=\int_{D} K d A=\varphi_{1}+\varphi_{2}+\varphi_{3}-\pi
$$

- On the sphere and pseudosphere, the angles determine the area of the triangle!
- On the plane, congruent triangles have the same angles but not generally the same area.

Triangles in non-Euclidean Geometry

- Sphere $K>0: \varphi_{1}+\varphi_{2}+\varphi_{3}=\operatorname{Area}(D)+\pi>\pi$
- Euclidean Space $K=0: \varphi_{1}+\varphi_{2}+\varphi_{3}=\pi$
- Pseudosphere $K<0: \varphi_{1}+\varphi_{2}+\varphi_{3}=-\operatorname{Area}(D)+\pi<\pi$

Constant Curvature Geometries

Regular Tilings

Definition

A regular n-gon of S is a piecewise regular, simple, closed curved with n vertices, bounding a disc whose arcs are all geodesics of the same length meeting at the same angle θ.

Let P_{i} denote a regular n-gon including the boundary curve and the interior.

Definition

A regular tiling of S is a set of regular n-gons P_{i} all of the same area such that
(1) $S=\cup_{i} P_{i}$
(0) For $i \neq j, P_{i} \cap P_{j}$ is either empty, a vertex, or an entire arc.

Planar Regular Tilings

- In the plane, the interior angle of a regular n-gon is

$$
\theta=\pi-2 \pi / n
$$

- Let k be the number of n-gons meeting at a vertex so that adding k copies of θ gives 2π :

$$
2 \pi=k \theta=k(\pi-2 \pi / n)=\frac{k n-2 k}{n} \pi
$$

- Therefore

$$
2 n=k n-2 k
$$

- That is

$$
0=k n-2 k-2 n=k(n-2)-2(n-2)-4=(k-2)(n-2)-4
$$

Planar Regular Tilings

- The only solutions (k, n) to

$$
(k-2)(n-2)=4
$$

are

$$
(k, n)=(6,3),(4,4),(3,6) .
$$

Spherical Regular Tilings

Example

On the sphere:

$$
2 \pi>\frac{k n-2 k}{n} \pi .
$$

Hence

$$
(k-2)(n-2)<4
$$

Not many solutions. . .

- Congruent but not regular polygons allows more possibilities:

Hyperbolic Tiling
The Poincare disc is the unit disc $D=\left\{x^{2}+y^{2}<1\right\}$ equipped with a metric g such that $K \equiv-1$. Gauss-Bonnet applies.

Example

- Now we have

$$
(k-2)(n-2)>4
$$

Infinitely many solutions!

Lecture Thirteen: Curvature and Global Geometry -Gauss-Bonnet Theorem (Global)

(1) Lecture Thirteen: Curvature and Global Geometry

- Connection on Regular Surfaces (hypersurfaces, sub-manifolds)
- Riemannian (Levi-Civita) Connection
- Second Derivatives
- Curvature Tensor
- Gauss Curvature
- Local Gauss-Bonnet
- Gauss-Bonnet Theorem (Global)

Triangulations

Definition

A triangulation of a regular surface S is a finite set of triangles, $\left\{T_{i}\right\}_{i=1}^{n}$ such that
(1) $S=\cup_{i=1}^{n} T_{i}$,
(2) Each intersection $T_{i} \cap T_{j}$ is either empty, a common edge of T_{i} and T_{j} or a common vertex of T_{i} and T_{j}.

A fundamental fact we use (without proof) is that there always exists triangulations of surfaces.
Let

$$
\begin{aligned}
& F=\text { number of triangles (faces) } \\
& E=\text { number of edges } \\
& V=\text { number of vertices. }
\end{aligned}
$$

Euler Characteristic

Definition

The Euler characteristic, χ of $\left\{T_{i}\right\}_{i=1}^{n}$ is defined be

$$
\chi=V-E+F
$$

Theorem (without proof)

The Euler characteristic is independent of the choice of triangulation. Thus we may define the Euler characteristic of a surface, $\chi(S)$ to be equal to the (common) Euler characteristic of any triangulation.

The Euler characteristic is a complete topological invariant for compact surfaces S_{1}, S_{2} :

Theorem (without proof)
If $\varphi: S_{1} \rightarrow S_{1}$ is a homeomorphism, then $\chi\left(S_{1}\right)=\chi\left(S_{1}\right)$. Conversely, if $\chi\left(S_{1}\right)=\chi\left(S_{2}\right)$, then there exists a homeomorphism $S_{1} \rightarrow S_{2}$.

Examples

- disc
- square
- annulis

Examples

- sphere
- torus
- g handles

Classification of Closed Surfaces (compact, no boundary)

Definition

A genus $g \in \mathbb{N}=\{0,1,2, \ldots\}$ surface S_{g} is homeomorphic to a sphere with g handles attached.

For every $g \in \mathbb{N}$, there exists such a surface.
Theorem (without proof)
(1) $\chi\left(S_{g}\right)=2(1-g)$
(2) Every compact surface has $\chi(S) \in\{-2,0,-2,-4, \ldots,-2 k, \ldots\}$.

Therefore every compact surface is homeomorphic to S_{g} for some g.
The proof follows by first showing that $\chi\left(\mathbb{S}^{2}\right)=2$, and then $\chi(S+$ handle $)=\chi(S)-2$.

Classification of Closed Surfaces

- Some pictures of genus g surfaces.

Global Gauss-Bonnet

Let $R \subseteq S$ be a regular region. That is, R is a region bounded by finitely many piecewise regular, simple, closed curves $\left\{C_{i}\right\}_{i=1}^{k}$.

Theorem (Global Gauss-Bonnet)

$$
\int_{R} K d A+\sum_{i=1}^{k}\left(\int_{C_{i}} \kappa d s+\sum_{j=1}^{N_{i}} \theta_{i j}\right)=2 \pi \chi(R)
$$

- We define

$$
\int_{R} K d A=\sum_{n} \int_{T_{n}} K d u d v
$$

where $\left\{T_{n}\right\}$ is a triangulation of R with each triangle contained in a local parametrisation.

- For each $i,\left\{\theta_{i j}\right\}_{j=1}^{N_{i}}$ denotes the exterior angles of C_{i} at the vertices.

Global Gauss-Bonnet Corollaries

Corollary
Let S be a compact, orientable, regular surface. Then

$$
\int_{S} K d A=2 \pi \chi(S)
$$

- This is quite an amazing result! Compare all the possible topological sphere with widely varying geometry. No matter what, the Gauss curvature distributes itself in such a way that the total Gauss curvature K (i.e. $\int_{S} K d A$) is the same.

Global Gauss-Bonnet Corollaries

- The standard torus and coffee cup are homeomorphic hence have the same total Gauss curvature.
- A g holed torus and the sphere with g handles attached are homeomorphic, hence have the same total Gauss curvature.
- The Gauss-Bonnet theorem holds also for compact two-dimensional Riemannian manifolds without boundary (closed Riemannian surface). In each homeomorphism class (all surfaces with the same Euler characterstic), there exists a unique (up to scale) closed Riemannian surface, M with constant Gauss curvature given by

$$
K \equiv \frac{2 \pi \chi(M)}{\operatorname{Area}(M)}
$$

Global Gauss-Bonnet Corollaries

Corollary

Any compact, regular surface, S with $K>0$ is homeomorphic to the sphere.

Proof.
Gauss-Bonnet implies

$$
\chi(S)=\int K d A>0
$$

and hence $\chi(S)=2$, hence S is homeomorphic to the sphere since χ is a complete invariant.

Global Gauss-Bonnet Corollaries

- In fact, every compact, regular surface S has an elliptic point (a point where $K>0$).
- This follows in a similar manner to the proof of the surjectivity of the Gauss map, but rather than taking a plane and moving it until it touches S, one takes a sphere containing S and shrinks it until it touches S. The second derivative test applied to the same function as in the Gauss map proof shows $K>0$.

Corollary

Every compact, regular surface with $\chi \leq 0$ has points of positive and negative Gauss curvature.

Theorem (A variant of Hilbert's Theorem)

There are no compact, regular surfaces with everywhere negative Gauss curvature.

Proof of Global Gauss-Bonnet Theorem

- Applying the local Gauss-Bonnet Theorem to each triangle T_{n} with boundary arcs $\gamma_{n}^{1}, \gamma_{n}^{2}, \gamma_{n}^{3}$ in a triangulation,

$$
\int_{T_{n}} K d A+\sum_{m=1}^{3}\left(\int_{\gamma_{n}^{m}} \kappa d s+\alpha_{n m}\right)=2 \pi
$$

where $\alpha_{j 1}, \alpha_{j 2}, \alpha_{j 3}$ are the external angles of the triangle T_{j}.

- Summing over the number F of triangles, all interior arcs appear exactly twice with opposite orientation hence cancel and all that is left are the boundary arcs C_{i} (see figure). Therefore,

$$
\int_{R} K d A+\sum_{i=1}^{k} \int_{C_{i}} \kappa d s+\sum_{n=1}^{F} \sum_{m=1}^{3} \alpha_{n m}=2 \pi F
$$

Proof of Global Gauss-Bonnet Theorem

- We have

$$
\int_{R} K d A+\sum_{i=1}^{k} \int_{C_{i}} \kappa d s+\sum_{n=1}^{F} \sum_{m=1}^{3} \alpha_{n m}=2 \pi F
$$

- Recall the theorem states that

$$
\int_{R} K d A+\sum_{i=1}^{k}\left(\int_{C_{i}} \kappa d s+\sum_{j=1}^{N_{i}} \theta_{i j}\right)=2 \pi \chi(R)=2 \pi(F-E+V)
$$

- Thus to prove the theorem we need to prove that

$$
\sum_{n=1}^{F} \sum_{m=1}^{3} \alpha_{n m}=\sum_{i=1}^{k} \sum_{j=1}^{N_{i}} \theta_{i j}+2 \pi(E-V)
$$

Proof of Global Gauss-Bonnet Theorem

- Let $\beta_{n m}=\pi-\alpha_{n m}$ be the internal angles of the triangle T_{n}.
- Recall the sum is over $1 \leq n \leq F$ and $1 \leq m \leq 3$.
- Then

$$
\sum \alpha_{n m}=\sum \pi-\beta_{n m}=3 \pi F-\sum \beta_{n m}
$$

- Thus we now want to show that

$$
3 \pi F-\sum \beta_{n m}=\sum \theta_{i j}+2 \pi(E-V)
$$

Proof of Global Gauss-Bonnet Theorem

- The idea is now to keep track of the edges that lie on a boundary curve C_{i} (exterior edges) and those that lie in the interior of R (interior edges).
- Thus we define

$$
E_{\text {ext }}=\text { number of exterior edges }
$$

$E_{\text {int }}=$ number of interior edges
$V_{\text {ext }}=$ number of exterior vertices
$V_{\text {int }}=$ number of interior vertices

Proof of Global Gauss-Bonnet Theorem

- Because the C_{i} are simple, closed curves, we have $V_{\text {ext }}=E_{\text {ext }}$.
- By induction on the number of triangles: $3 F=2 E_{\text {int }}+E_{\text {ext }}$.
- Thus we have

$$
\begin{aligned}
3 \pi F-\sum \beta_{n m} & =2 \pi E_{\mathrm{int}}+\pi E_{\mathrm{ext}}-\sum \beta_{n m}+2 \pi E_{\mathrm{ext}}-2 \pi V_{\mathrm{ext}} \\
& =2 \pi E_{\mathrm{int}}+2 \pi E_{\mathrm{ext}}+\pi E_{\mathrm{ext}}-2 \pi V_{\mathrm{ext}}-\sum \beta_{n m} \\
& =2 \pi E-\pi V_{\mathrm{ext}}-\sum \beta_{n m}
\end{aligned}
$$

- To finally finish we need to show that

$$
-\pi V_{\mathrm{ext}}-\sum \beta_{n m}=-2 \pi V+\sum \theta_{i j}
$$

Proof of Global Gauss-Bonnet Theorem

- Divide the $\beta_{n m}$ into internal and external vertices

$$
\sum \beta_{m n}=\sum_{a} \beta_{\mathrm{int}, a}+\sum_{b} \beta_{\mathrm{ext}, b}
$$

- For the internal vertices, the sum of the angles equals to 2π, hence

$$
\sum_{a} \beta_{\mathrm{int}, a}=2 \pi V_{\mathrm{int}}
$$

- For the external vertices, let $V_{\text {ext }, C}$ denote the number of vertices of the triangulation that are also vertices of a boundary arc C_{i}.
- Let $V_{\text {ext, } T}$ denote the number of external vertices of the triangulation that are not also vertices of any boundary arc C_{i}.
- Thus

$$
V_{\mathrm{ext}}=V_{\mathrm{ext}, C}+V_{\mathrm{ext}, T}
$$

Proof of Global Gauss-Bonnet Theorem

- Divide the external vertices of the triangulation into those from the arcs C_{i} and those from the triangulation alone so that

$$
\sum_{b} \beta_{\mathrm{ext}, b}=\sum_{c} \beta_{\mathrm{ext}, C, c}+\sum_{d} \beta_{\mathrm{ext}, T, d}
$$

- For vertices $\beta_{\mathrm{ext}, T, d}$ of the triangulation but not of of an arc C_{i}, each vertex is a regular point of the curve C_{i} so that the sum of the two angles equals π. Thus

$$
\sum_{d} \beta_{\mathrm{ext}, T, d}=\pi V_{\mathrm{ext}, T}
$$

- The remaining angles are internal angles at vertices of some C_{i} so that

$$
\sum_{c} \beta_{\mathrm{ext}, C, d}=\sum_{i j} \varphi_{i j}=\sum_{i j} \pi-\theta_{i j}=\pi V_{\mathrm{ext}, C}-\sum_{i j} \theta_{i j}
$$

Proof of Global Gauss-Bonnet Theorem

- Thus we come to the end of the proof: we need to show

$$
-\pi V_{\mathrm{ext}}-\sum \beta_{n m}=-2 \pi V+\sum \theta_{i j}
$$

- Summing up all our group of angles (internal, external and part of a C_{i}, external and not part of a C_{i}):

$$
\begin{aligned}
-\pi V_{\mathrm{ext}}-\sum \beta_{n m} & =-\pi V_{\mathrm{ext}}-2 \pi V_{\mathrm{int}}-\pi V_{\mathrm{ext}, T}-\left(\pi V_{\mathrm{ext}, C}-\sum_{i j} \theta_{i j}\right) \\
& =-\pi V_{\mathrm{ext}}-\pi\left(V_{\mathrm{ext}, T}+\pi V_{\mathrm{ext}, C}\right)-2 \pi V_{\mathrm{int}}+\sum_{i j} \theta_{i j} \\
& =-2 \pi V_{\mathrm{ext}}-2 \pi V_{\mathrm{int}}+\sum_{i j} \theta_{i j} \\
& =-2 \pi V+\sum_{i j} \theta_{i j} .
\end{aligned}
$$

